Problem 2. Solve the following questions, 2(A) & 2(B). Show that 13 + 23 + 33 + +n is O(n*). Show that the function f(r) = (r+ 2) log(r² + 1) + log(r³ + 1) is O(r log r).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

130-2

Problem 2.
Solve the following questions, 2(A) & 2(B).
Show that 13+ 23 +33 + ...+n is O(n).
Show that the function f(x) = (r+ 2) log(r² + 1) + log(r³ + 1) is O(x log r).
%3D
Transcribed Image Text:Problem 2. Solve the following questions, 2(A) & 2(B). Show that 13+ 23 +33 + ...+n is O(n). Show that the function f(x) = (r+ 2) log(r² + 1) + log(r³ + 1) is O(x log r). %3D
Expert Solution
Step 1

Given : To prove 13+23+33++n3 has the order O(n4)formula: (1) Choose k=1(2) Assuming n>k=1, find the value of λ such that  f(n)O(g(n))=λg(n)(3) Arrive at the conclusion that n>k=1 f(n)λ(g(n))

steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,