Problem 2. For the function defined by if -22x20 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

2

Please write every step 

**Problem 2.**

For the function defined by

\[ 
f(x) = 
\begin{cases} 
x - 2 & \text{if } -2 < x < 0 \\
x + 2 & \text{if } 0 < x < 2 
\end{cases} 
\]

Sketch the 4-period extension of \( f \) and determine the Fourier coefficients.

**Ans.** 

\[
f(x) \sim \sum_{n=1}^{\infty} \frac{4}{n \pi} \left( 1 - 2 (-1)^n \right) \sin\left( \frac{n \pi}{2} x \right)
\]
Transcribed Image Text:**Problem 2.** For the function defined by \[ f(x) = \begin{cases} x - 2 & \text{if } -2 < x < 0 \\ x + 2 & \text{if } 0 < x < 2 \end{cases} \] Sketch the 4-period extension of \( f \) and determine the Fourier coefficients. **Ans.** \[ f(x) \sim \sum_{n=1}^{\infty} \frac{4}{n \pi} \left( 1 - 2 (-1)^n \right) \sin\left( \frac{n \pi}{2} x \right) \]
Expert Solution
Introduction

As per the question we are given a piecewise defined function f(x)  with period 4 and we have to find its Fourier series expansion.

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,