Problem # 2 a) Determine by direct integration Ixy for the triangular shape shown in Figures 1 and 2. Answer: 1) Ixy = -b²h²/24 2) Ixy=b²h²/24 4. b Figure 1 b) Determine Ix, Iy, and Ixy for the given area. Answer: Ix= 3.2x10° mm², Iy = 7.2x10° mmª, and Ixy = 2.4x106 mmª 60 mm y -60 mm- Figure 2 40 mm 40 mm
Problem # 2 a) Determine by direct integration Ixy for the triangular shape shown in Figures 1 and 2. Answer: 1) Ixy = -b²h²/24 2) Ixy=b²h²/24 4. b Figure 1 b) Determine Ix, Iy, and Ixy for the given area. Answer: Ix= 3.2x10° mm², Iy = 7.2x10° mmª, and Ixy = 2.4x106 mmª 60 mm y -60 mm- Figure 2 40 mm 40 mm
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Problem #2
a) Determine by direct integration Ixy
for the triangular shape shown in
Figures 1 and 2.
Answer: 1) Ixy = -b²h²/24
2) Ixy=b²h²/24
4.
b
Figure 1
b) Determine Ix, Iy, and Ixy for the given area.
Answer: Ix= 3.2x10° mm², Iy = 7.2x10° mmª,
and
Ixy = 2.4x106 mm*
60 mm
y
-60 mm-
Figure 2
40 mm
40 mm](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F95bb2b0f-8741-4456-bc1f-95255673d3fb%2F69758100-0352-4e3e-ac49-cec40d6838b8%2F0wm1y5q_processed.png&w=3840&q=75)
Transcribed Image Text:Problem #2
a) Determine by direct integration Ixy
for the triangular shape shown in
Figures 1 and 2.
Answer: 1) Ixy = -b²h²/24
2) Ixy=b²h²/24
4.
b
Figure 1
b) Determine Ix, Iy, and Ixy for the given area.
Answer: Ix= 3.2x10° mm², Iy = 7.2x10° mmª,
and
Ixy = 2.4x106 mm*
60 mm
y
-60 mm-
Figure 2
40 mm
40 mm
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)