Problem 12:  When water flows through river rapids or over a waterfall, it experiences a decrease in height and thus a decrease in gravitational potential energy. Some of this energy goes into producing noise and eroding rock, but much of the energy goes into heating the water. A river flows over a waterfall of height h = 41 m. Assume all the available gravitational energy is converted into internal energy of the water. There is no change in the kinetic energy, because the flow speed of the river is the same above and below the waterfall. Part (a)  Enter an expression for the change in temperature of the water, in terms of the height of the waterfall, h, the specific heat of water, c, and the acceleration due to gravity, g. Part (b)  Calculate the change in temperature, in degrees Celsius, of the river water in this problem. The specific heat of water is 4.19×103 J/(kg⋅°C).

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Topic Video
Question

 Problem 12:  When water flows through river rapids or over a waterfall, it experiences a decrease in height and thus a decrease in gravitational potential energy. Some of this energy goes into producing noise and eroding rock, but much of the energy goes into heating the water. A river flows over a waterfall of height h = 41 m. Assume all the available gravitational energy is converted into internal energy of the water. There is no change in the kinetic energy, because the flow speed of the river is the same above and below the waterfall.

Part (a)  Enter an expression for the change in temperature of the water, in terms of the height of the waterfall, h, the specific heat of water, c, and the acceleration due to gravity, g.

Part (b)  Calculate the change in temperature, in degrees Celsius, of the river water in this problem. The specific heat of water is 4.19×103 J/(kg⋅°C). 

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Kinetic energy
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON