Problem 11.2.19. Since the convergence of Cauchy sequences can be taken as the completeness axiom for the real number system, it does not hold for the rational number system. Give an example of a Cauchy sequence of rational numbers which does not converge to a rational number.
Problem 11.2.19. Since the convergence of Cauchy sequences can be taken as the completeness axiom for the real number system, it does not hold for the rational number system. Give an example of a Cauchy sequence of rational numbers which does not converge to a rational number.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
thank you so much.

Transcribed Image Text:Problem 11.2.19. Since the convergence of Cauchy sequences can be taken
as the completeness axiom for the real number system, it does not hold for the
rational number system. Give an example of a Cauchy sequence of rational
numbers which does not converge to a rational number.

Transcribed Image Text:Theorem 11.2.15. Cauchy sequences converge
Suppose (sn) is a Cauchy sequence of real numbers. There exists a real number s
such that limn→∞ Sn = s.
Sketch of Proof. We know that (sn) is bounded, so by the Bolzano-Weierstrass
Theorem, it has a convergent subsequence (Snk) converging to some real
number s. We have sn – s = |Sn – Snp + Snk
s| < |Sn – Sni|+|Snk
8|. If we
choose n and ng large enough, we should be able to make each term arbitrarily
small.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

