Problem 1.4 Using the following vectors A = a i+ 2y j+ 3z k B = 3y i – 2x j Check the product rules by calculating each term separately a) Divergence Product Rule (iv) V· (A x B) = B· (V × A) – A · (V × B) %3D

icon
Related questions
Question
## Problem 1.4
**Using the following vectors:**

\[
\mathbf{A} = x \, \mathbf{i} + 2y \, \mathbf{j} + 3z \, \mathbf{k}
\]

\[
\mathbf{B} = 3y \, \mathbf{i} - 2x \, \mathbf{j}
\]

Check the product rules by calculating each term separately:

### a) Divergence Product Rule (iv)
\[
\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B})
\]

### b) Gradient Product Rule (ii)
\[
\nabla (\mathbf{A} \cdot \mathbf{B}) = \mathbf{A} \times (\nabla \times \mathbf{B}) + \mathbf{B} \times (\nabla \times \mathbf{A}) + (\mathbf{A} \cdot \nabla) \mathbf{B} + (\mathbf{B} \cdot \nabla) \mathbf{A}
\]

### c) Curl Product Rule (vi)
\[
\nabla \times (\mathbf{A} \times \mathbf{B}) = (\mathbf{B} \cdot \nabla) \mathbf{A} - (\mathbf{A} \cdot \nabla) \mathbf{B} + \mathbf{A} (\nabla \cdot \mathbf{B}) - \mathbf{B} (\nabla \cdot \mathbf{A})
\]
Transcribed Image Text:## Problem 1.4 **Using the following vectors:** \[ \mathbf{A} = x \, \mathbf{i} + 2y \, \mathbf{j} + 3z \, \mathbf{k} \] \[ \mathbf{B} = 3y \, \mathbf{i} - 2x \, \mathbf{j} \] Check the product rules by calculating each term separately: ### a) Divergence Product Rule (iv) \[ \nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B}) \] ### b) Gradient Product Rule (ii) \[ \nabla (\mathbf{A} \cdot \mathbf{B}) = \mathbf{A} \times (\nabla \times \mathbf{B}) + \mathbf{B} \times (\nabla \times \mathbf{A}) + (\mathbf{A} \cdot \nabla) \mathbf{B} + (\mathbf{B} \cdot \nabla) \mathbf{A} \] ### c) Curl Product Rule (vi) \[ \nabla \times (\mathbf{A} \times \mathbf{B}) = (\mathbf{B} \cdot \nabla) \mathbf{A} - (\mathbf{A} \cdot \nabla) \mathbf{B} + \mathbf{A} (\nabla \cdot \mathbf{B}) - \mathbf{B} (\nabla \cdot \mathbf{A}) \]
**Problem 1.5**

Using the formal definition of the Laplacian,

\[
\nabla^2 T = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2}
\]

Calculate the Laplacian of the following functions:

a) \( T_a = x^2 + 2xy + 3z + 4 \)

b) \( T_b = \sin x \sin y \sin z \)

c) \( T_c = e^{-5x} \sin 4y \cos 3z \)

d) \( \mathbf{v} = x^2 \, \mathbf{i} + 3xz^2 \, \mathbf{j} - 2xz \, \mathbf{k} \)
Transcribed Image Text:**Problem 1.5** Using the formal definition of the Laplacian, \[ \nabla^2 T = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \] Calculate the Laplacian of the following functions: a) \( T_a = x^2 + 2xy + 3z + 4 \) b) \( T_b = \sin x \sin y \sin z \) c) \( T_c = e^{-5x} \sin 4y \cos 3z \) d) \( \mathbf{v} = x^2 \, \mathbf{i} + 3xz^2 \, \mathbf{j} - 2xz \, \mathbf{k} \)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer