== Problem 1. Recall that O2 (R) = {A = M₂(R): A'A = 1} is the group of 2 × 2 orthogonal matrices, and let A = O2(R). 1.1. Show that det(A) = 1 or det(A) = −1. 1.2. Show that the transformation TA: R² → R² defined by TA(v) = Av is a linear isometry. This will complete the proof of Corollary 1.14 from the course notes. 1.3. Let v R² be the first column of A and let w R² be the second, so that A=(vw). Show that v and w satisfy ||v|| = ||w|| = 1 and v.w=0.

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
Question

Thank you.

==
Problem 1. Recall that O2 (R) = {A = M₂(R): A'A = 1} is the group of 2 × 2
orthogonal matrices, and let A = O2(R).
1.1. Show that det(A) = 1 or det(A) = −1.
1.2. Show that the transformation TA: R² → R² defined by TA(v) = Av is a linear
isometry. This will complete the proof of Corollary 1.14 from the course notes.
1.3. Let v R² be the first column of A and let w R² be the second, so that
A=(vw). Show that v and w satisfy
||v|| = ||w|| = 1 and v.w=0.
Transcribed Image Text:== Problem 1. Recall that O2 (R) = {A = M₂(R): A'A = 1} is the group of 2 × 2 orthogonal matrices, and let A = O2(R). 1.1. Show that det(A) = 1 or det(A) = −1. 1.2. Show that the transformation TA: R² → R² defined by TA(v) = Av is a linear isometry. This will complete the proof of Corollary 1.14 from the course notes. 1.3. Let v R² be the first column of A and let w R² be the second, so that A=(vw). Show that v and w satisfy ||v|| = ||w|| = 1 and v.w=0.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education