Problem 1: Universal Approximation Theorem for Deep Neural Networks with ReLU Activations Statement: Prove that a feedforward neural network with a single hidden layer using ReLU (Rectified Linear Unit) activation functions is a universal approximator. Specifically, show that for any continuous function f : R" → R and for any € > 0, there exists a neural network N with one hidden layer such that: sup f(x) N(x)| < € xЄK where K is a compact subset of Rn. Key Points for the Proof: • • Utilize the properties of ReLU functions to construct piecewise linear approximations of f. Show that the linear combinations of ReLU activations can approximate any continuous function on compact subsets. Address the density of the set of functions representable by the neural network in the space of continuous functions.
Problem 1: Universal Approximation Theorem for Deep Neural Networks with ReLU Activations Statement: Prove that a feedforward neural network with a single hidden layer using ReLU (Rectified Linear Unit) activation functions is a universal approximator. Specifically, show that for any continuous function f : R" → R and for any € > 0, there exists a neural network N with one hidden layer such that: sup f(x) N(x)| < € xЄK where K is a compact subset of Rn. Key Points for the Proof: • • Utilize the properties of ReLU functions to construct piecewise linear approximations of f. Show that the linear combinations of ReLU activations can approximate any continuous function on compact subsets. Address the density of the set of functions representable by the neural network in the space of continuous functions.
Linear Algebra: A Modern Introduction
4th Edition
ISBN:9781285463247
Author:David Poole
Publisher:David Poole
Chapter3: Matrices
Section3.7: Applications
Problem 69EQ
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 3 images
Recommended textbooks for you
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning