Problem 1) The cumulative distribution function of random variable X is: 0 x<-1 x + 1 Fx(x) = a) Find P[X > 1/2]. b) Find P[-1/2 < X ≤ 3/4]. c) Find P[|X| ≤ 1/2]. 2 1 -1

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
Do #1
**Problem 1**  
The cumulative distribution function of random variable \( X \) is:

\[
F_X(x) = 
\begin{cases} 
0 & x < -1 \\ 
\frac{x + 1}{2} & -1 \leq x < 1 \\ 
1 & x \geq 1 
\end{cases}
\]

a) Find \( P[X > 1/2] \).  
b) Find \( P[-1/2 < X \leq 3/4] \).  
c) Find \( P[|X| \leq 1/2] \).  
d) What is the value of \( a \) such that \( P[X \leq a] = 0.8 \).  
e) Find the PDF \( f_X(x) \) of \( X \).  

---

**Problem 2**  
The CDF of random variable \( W \) is:

\[
F_W(w) = 
\begin{cases} 
0 & x < -5 \\ 
\frac{w + 5}{8} & -5 \leq w < -3 \\ 
\frac{1}{4} & -3 \leq w < 3 \\ 
\frac{1}{4} + \frac{3(w - 3)}{8} & 3 \leq w < 5 \\ 
1 & w \geq 5 
\end{cases}
\]

a) Find \( P[W \leq 4] \).  
b) Find \( P[-2 < W \leq 2] \).  
c) Find \( P[W > 0] \).  
d) What is the value of \( a \) such that \( P[W \leq a] = 0.5 \).  

---

**Problem 3**  
The random variable \( X \) has the following probability density function:

\[
f_X(x) = 
\begin{cases} 
cx & 0 \leq x \leq 2 \\ 
0 & \text{otherwise} 
\end{cases}
\]

a) Find the constant \( c \).  
b) Find \( P[0 \leq X \leq 1] \).  
c) Find \( P[-1/2 \leq X \le
Transcribed Image Text:**Problem 1** The cumulative distribution function of random variable \( X \) is: \[ F_X(x) = \begin{cases} 0 & x < -1 \\ \frac{x + 1}{2} & -1 \leq x < 1 \\ 1 & x \geq 1 \end{cases} \] a) Find \( P[X > 1/2] \). b) Find \( P[-1/2 < X \leq 3/4] \). c) Find \( P[|X| \leq 1/2] \). d) What is the value of \( a \) such that \( P[X \leq a] = 0.8 \). e) Find the PDF \( f_X(x) \) of \( X \). --- **Problem 2** The CDF of random variable \( W \) is: \[ F_W(w) = \begin{cases} 0 & x < -5 \\ \frac{w + 5}{8} & -5 \leq w < -3 \\ \frac{1}{4} & -3 \leq w < 3 \\ \frac{1}{4} + \frac{3(w - 3)}{8} & 3 \leq w < 5 \\ 1 & w \geq 5 \end{cases} \] a) Find \( P[W \leq 4] \). b) Find \( P[-2 < W \leq 2] \). c) Find \( P[W > 0] \). d) What is the value of \( a \) such that \( P[W \leq a] = 0.5 \). --- **Problem 3** The random variable \( X \) has the following probability density function: \[ f_X(x) = \begin{cases} cx & 0 \leq x \leq 2 \\ 0 & \text{otherwise} \end{cases} \] a) Find the constant \( c \). b) Find \( P[0 \leq X \leq 1] \). c) Find \( P[-1/2 \leq X \le
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman