Problem 1: Bosons, Fermions Consider a system of five particles, inside a container where the allowed energy levels are nondegenerate and evenly spaced. For instance, the particles could be trapped in a one-dimensional harmonic oscillator potential. In this problem you will consider the allowed states for this system, depending on whether particles are identical fermions, identical bosons, or distinguishable particles. a) Describe the ground state of this system, for each of these three cases. b) Suppose that the system has one unit of energy (above the ground state). Describe the allowed states of the system, for each of the three cases. How many possible system states are there in each case? c) Repeat part (b) for two units of energy and for three units of energy. d) Suppose that the temperate of this system is low, so that the total energy is low (though not necessarily zero). In what way will the behavior of the bosonic system differ from that of the system of distinguishable particles? Discuss.
Problem 1: Bosons, Fermions Consider a system of five particles, inside a container where the allowed energy levels are nondegenerate and evenly spaced. For instance, the particles could be trapped in a one-dimensional harmonic oscillator potential. In this problem you will consider the allowed states for this system, depending on whether particles are identical fermions, identical bosons, or distinguishable particles. a) Describe the ground state of this system, for each of these three cases. b) Suppose that the system has one unit of energy (above the ground state). Describe the allowed states of the system, for each of the three cases. How many possible system states are there in each case? c) Repeat part (b) for two units of energy and for three units of energy. d) Suppose that the temperate of this system is low, so that the total energy is low (though not necessarily zero). In what way will the behavior of the bosonic system differ from that of the system of distinguishable particles? Discuss.
Related questions
Question
100%
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 4 images