Problem 1: Assume that the vector field E = (E1, E2, E3) : R³ → R³ is twice continu- ously differentiable (E; € C²(R³), i = 1, 2, 3). Show that V × (V × E) = ▼(V · E) – ▼.VE. Derivatives are taken componentwise, for example, V · VE = (V · VE₁, V · VE2, ▼ · VE3).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
→
Problem 1: Assume that the vector field E = (E₁, E2, E3) : R³ R³ is twice continu-
ously differentiable (E; € C²(R³), i = 1, 2, 3). Show that
V x (V x E) = V(V · E) — V · VE.
Derivatives are taken componentwise, for example,
V · VE = (V · VE₁, V VE2, V · VE3).
Transcribed Image Text:→ Problem 1: Assume that the vector field E = (E₁, E2, E3) : R³ R³ is twice continu- ously differentiable (E; € C²(R³), i = 1, 2, 3). Show that V x (V x E) = V(V · E) — V · VE. Derivatives are taken componentwise, for example, V · VE = (V · VE₁, V VE2, V · VE3).
Expert Solution
Step 1: Introduction

Given that,

The vector field E space equals open parentheses E subscript 1 comma space E subscript 2 comma space E subscript 3 close parentheses space colon space R cubed rightwards arrow with blank on top R cubed is double differentiable.

Here, nabla equals i with hat on top fraction numerator partial differential over denominator partial differential x end fraction plus j with hat on top fraction numerator partial differential over denominator partial differential y end fraction plus k with hat on top fraction numerator partial differential over denominator partial differential z end fraction is known as the gradient operator and cross times text  and end text space times are the symbols of cross and dot product respectively.

Now the cross product nabla cross times E is given as:

nabla cross times E equals open vertical bar table row cell i with hat on top end cell cell j with hat on top end cell cell k with hat on top end cell row cell fraction numerator partial differential over denominator partial differential x end fraction end cell cell fraction numerator partial differential over denominator partial differential y end fraction end cell cell fraction numerator partial differential over denominator partial differential z end fraction end cell row cell E subscript 1 end cell cell E subscript 2 end cell cell E subscript 3 end cell end table close vertical bar
nabla cross times E equals i with hat on top open parentheses fraction numerator partial differential E subscript 3 over denominator partial differential y end fraction minus fraction numerator partial differential E subscript 2 over denominator partial differential z end fraction close parentheses minus j with hat on top open parentheses fraction numerator partial differential E subscript 3 over denominator partial differential x end fraction minus fraction numerator partial differential E subscript 1 over denominator partial differential z end fraction close parentheses plus j with hat on top open parentheses fraction numerator partial differential E subscript 2 over denominator partial differential x end fraction minus fraction numerator partial differential E subscript 1 over denominator partial differential y end fraction close parentheses


steps

Step by step

Solved in 3 steps with 8 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,