Probability; 1000 Ω resistors with 5% tolerance are produced in a production line. The X random variable represents the value of a resistor. If X random variable is N(1000,2500). What is the probability that a randomly selected resistor fails? (Hint: Use the following table)
Continuous Probability Distributions
Probability distributions are of two types, which are continuous probability distributions and discrete probability distributions. A continuous probability distribution contains an infinite number of values. For example, if time is infinite: you could count from 0 to a trillion seconds, billion seconds, so on indefinitely. A discrete probability distribution consists of only a countable set of possible values.
Normal Distribution
Suppose we had to design a bathroom weighing scale, how would we decide what should be the range of the weighing machine? Would we take the highest recorded human weight in history and use that as the upper limit for our weighing scale? This may not be a great idea as the sensitivity of the scale would get reduced if the range is too large. At the same time, if we keep the upper limit too low, it may not be usable for a large percentage of the population!
1000 Ω resistors with 5% tolerance are produced in a production line. The X random variable represents the value of a resistor. If X random variable is N(1000,2500). What is the probability that a randomly selected resistor fails?
(Hint: Use the following table)
![STANDARD NORMAL TABLE (Z)
Entries in the table give the area under the curve
between the mean and z standard deviations above
the mean. For example, for z=1.25 the area under
the curve between the mean (0) and z is 0.3944.
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.0
0.1
0.0000
0.0040
0.0438
0.0080 0.0120 0.0160 0.0190 0.0239 0.0279 0.0319 0.0359
0.0398
0.2 0.0793 0.0832 0.0871
0.1179
0.1554
0.0478 0.0517 0.0557 0.0596
0.0636 0.0675 0.0714 0.0753
0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
0.3
0.4
0.5
0.6
0.1217
0.1255 0.1293 0.1331
0.1628 0.1664 0.1700
0.1368 0.1406 0.1443 0.1480 0.1517
0.1591
0.1736 0.1772 0.1808 0.1844 0.1879
0.1915
0.2257
0.1950
0.2291
0.1985 0.2019 0.2054
0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549
0.2642 0.2673 0.2704
0.2939 0.2969 0.2995
0.3212 0.3238 0.3264
0.2088 0.2123 0.2157 0.2190 0.2224
0.7
0.8 0.2881
0.9
0.2580
0.2611
0.2734
0.2764
0.2794
0.2823 0.2852
0.2910
0.3186
0.3023
0.3289
0.3051
0.3315 0.3340 0.3365 0.3389
0.3078 0.3106 0.3133
0.3159
1.0 0.3413
0.3438 0.3461
0.3485 0.3508
0.3513
0.3554 0.3577 0.3529 0.3621
0.3770 0.3790 0.3810 0.3830
0.3944 0.3962 0.3980 0.3997 0.4015
0.4147 0.4162
1.1
0.3643
0.3665 0.3686 0.3708 0.3729
0.3749
1.2 0.3849
1.3
1.4 0.4192
1.5
0.3869
0.3888 0.3907 0.3925
0.4049
0.4207
0.4345
0.4463
0.4032
0.4066 0.4082 0.4099
0.4115
0.4131
0.4177
0.4222 0.4236 0.4251
0.4265
0.4279
0.4292 0.4306 0.4319
0.4332
1.6 0.4452
1.7
0.4357 0.4370 0.4382
0.4394
0.4406 0.4418 0.4429 0.4441
0.4474 0.4484 0.4495
0.4505
0.4515 0.4525 0.4535
0.4545
0.4554
1.8 0.4641
1.9
2.0 0.4772
2.1
0.4564 0.4573 0.4582 0.4591
0.4599
0.4608 0.4616 0.4625 0.4633
0.4649
0.4656 0.4664 0.4671
0.4678
0.4686 0.4693 0.4699 0.4706
0.4719
0.4778
0.4713
0.4726 0.4732 0.4738
0.4783 0.4788 0.4793
0.4744
0.4750 0.4756 0.4761
0.4803 0.4808 0.4812 0.4817
0.4767
0.4798
0.4821
0.4826 0.4830 0.4834 0.4838
0.4842
0.4846 0.4850 0.4854 0.4857
2.2 0.4861
2.3
2.4 0.4918
2.5
0.4864
0.4893 0.4896 0.4898 0.4901
0.4920
0.4868 0.4871
0.4875
0.4904
0.4922 0.4925 0.4927
0.4941 0.4943 0.4945
0.4955 0.4956 0.4957 0.4959
0.4878
0.4906
0.4929
0.4946 0.4948 0.4949 0.4951 0.4952
0.4960
0.4881
0.4909 0.4911
0.4931
0.4884 0.4887 0.4890
0.4913 0.4916
0.4932 0.4934 0.4936
0.4938
0.4953
0.4940
0.4961
2.6
2.7
2.8
2.9
3.0
3.1
3.2 0.4993
3.3
3.4 0.4997
0.4962 0.4963 0.4964
0.4965
0.4966 0.4967 0.4968 0.4969
0.4970 0.4971
0.4972 0.4973 0.4974
0.4974
0.4975 0.4976 0.4977 0.4977
0.4978
0.4979 0.4979 0.4980 0.4981
0.4981
0.4982 0.4982 0.4983 0.4984
0.4984 0.4985 0.4985 0.4986 0.4986
0.4987 0.4987 0.4987 0.4988 0.4988
0.4989
0.4989 0.4989 0.4990 0.4990
0.4990
0.4991
0.4991 0.4991 0.4992
0.4992 0.4992 0.4992 0.4993 0.4993
0.4993 0.4994 0.4994 0.4994
0.4994
0.4994 0.4995 0.4995 0.4995
0.4995
0.4995
0.4995 0.4996 0.4996
0.4996
0.4996 0.4996 0.4996 0.4997
0.4997 0.4997 0.4997 0.4997
0.4997
0.4997 0.4997 0.4997 0.4998](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd36c63ce-8093-49b2-a67d-9c7f0d69fa93%2F9c0b5047-2c9e-417e-9070-b78e6f50e44c%2F90473rl_processed.png&w=3840&q=75)
![O a. 0.05456
O b.0.456
Oc03174
O d. 0.956
O e. 0.0456](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd36c63ce-8093-49b2-a67d-9c7f0d69fa93%2F9c0b5047-2c9e-417e-9070-b78e6f50e44c%2F7e12g5_processed.png&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Step by step
Solved in 2 steps with 5 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![A First Course in Probability (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134753119/9780134753119_smallCoverImage.gif)
![A First Course in Probability](https://www.bartleby.com/isbn_cover_images/9780321794772/9780321794772_smallCoverImage.gif)
![A First Course in Probability (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134753119/9780134753119_smallCoverImage.gif)
![A First Course in Probability](https://www.bartleby.com/isbn_cover_images/9780321794772/9780321794772_smallCoverImage.gif)