Premises: Vx(P(x) v Q(x)) \x((~P(x)^Q(x))→R(x)) Step 1. Vx(P(x) VQ(x)) 2. P(a) v Q(a) 3. P(a) v Q(a) v R (a) 4. \x((→P(x)^Q(x))→ R(x)) 5. (¬P(a)^Q(a))→R(a) 6. (P(a)^Q(a)) v R(a) 7. P(a)v-Q(a) v R (a) 8. P(a)✓ R(a) 9. (-R(a)) v P(a) 10. -R(a) →→ P(a) 11. Vx(-R(x)→P(x)) Reason Premise Premise Conclusion: Vx(-R(x)→ P(x))

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

In the following argument, give a justification for each step.

Premises:
vx(P(x)v Q(x))
\x((¬P(x)^Q(x))→R(x))
Step
1. Vx(P(x)Q(x))
2. P(a) v Q(a)
3. P(a)vQ(a) v R(a)
4. Vx((-P(x)^Q(x))→ R(x))
5. (P(a)^Q(a)) →→ R(a)
6. (P(a)^Q(a)) v R (a)
7. P(a)v-Q(a) v R (a)
8. P(a) v R(a)
9. (R(a)) v P(a)
10. -R(a) →→P(a)
11. Vx(-R(x)→P(x))
Reason
Premise
Premise
Conclusion: Vx(-R(x)→P(x))
Transcribed Image Text:Premises: vx(P(x)v Q(x)) \x((¬P(x)^Q(x))→R(x)) Step 1. Vx(P(x)Q(x)) 2. P(a) v Q(a) 3. P(a)vQ(a) v R(a) 4. Vx((-P(x)^Q(x))→ R(x)) 5. (P(a)^Q(a)) →→ R(a) 6. (P(a)^Q(a)) v R (a) 7. P(a)v-Q(a) v R (a) 8. P(a) v R(a) 9. (R(a)) v P(a) 10. -R(a) →→P(a) 11. Vx(-R(x)→P(x)) Reason Premise Premise Conclusion: Vx(-R(x)→P(x))
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,