Potassium-argon dating is used to measure the age of rocks formed from cooled lava by determining the fraction of the original 40K remaining in a sample from the ratio of 40K:40Ar. Unusually, potassium-40 decays into both 40Ca (89.1% of the time) and 40Ar (10.9% of the time) with a half-life of 1:248 x 10^9 years. 1. What is the calculated age of a sample in which the faction of 40K remaining was found to be 0.0043? 2. Is this result physically plausible?
Potassium-argon dating is used to measure the age of rocks formed from cooled lava by determining the fraction of the original 40K remaining in a sample from the ratio of 40K:40Ar. Unusually, potassium-40 decays into both 40Ca (89.1% of the time) and 40Ar (10.9% of the time) with a half-life of 1:248 x 10^9 years. 1. What is the calculated age of a sample in which the faction of 40K remaining was found to be 0.0043? 2. Is this result physically plausible?
Related questions
Question
Potassium-argon dating is used to measure the age of rocks formed from cooled lava by determining the fraction of the original 40K remaining in a sample from the ratio of 40K:40Ar. Unusually, potassium-40 decays into both 40Ca (89.1% of the time) and 40Ar (10.9% of the time) with a half-life of 1:248 x 10^9 years.
1. What is the calculated age of a sample in which the faction of 40K remaining was found to be 0.0043?
2. Is this result physically plausible?
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)