pot the Mistake! Using FOBDE find the general solution of: dydx−y=xy2dydx−y=xy2 Solution: P(x)=−1;Q(x)=x;n=2P(x)=−1;Q(x)=x;n=2 μ(x)=e(1−2)∫−1dxμ(x)=e(1−2)∫−1dx μ(x)=exμ(x)=ex y(1−2)ex=(1−2)∫xexdx+Cy(1−2)ex=(1−2)∫xexdx+C using integration by parts uv−∫vduuv−∫vdu ∫xexdx∫xexdx letu=xdv=exdxletu=xdv=exdx dv=1dxv=exdv=1dxv=ex xex−∫exdxxex−∫exdx xex−exxex−ex y(1−2)ex=(1−2)[xex−ex]+Cy(1−2)ex=(1−2)[xex−ex]+C y−1ex=ex(−x+1)+Cy−1ex=ex(−x+1)+C divide it both side by exex y−1=−x+1+Ce−x

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Spot the Mistake!

Using FOBDE find the general solution of:

dydx−y=xy2dydx−y=xy2

Solution:

P(x)=−1;Q(x)=x;n=2P(x)=−1;Q(x)=x;n=2

μ(x)=e(1−2)∫−1dxμ(x)=e(1−2)∫−1dx

μ(x)=exμ(x)=ex

y(1−2)ex=(1−2)∫xexdx+Cy(1−2)ex=(1−2)∫xexdx+C

using integration by parts

uv−∫vduuv−∫vdu

∫xexdx∫xexdx

letu=xdv=exdxletu=xdv=exdx

dv=1dxv=exdv=1dxv=ex

xex−∫exdxxex−∫exdx

xex−exxex−ex

y(1−2)ex=(1−2)[xex−ex]+Cy(1−2)ex=(1−2)[xex−ex]+C

y−1ex=ex(−x+1)+Cy−1ex=ex(−x+1)+C

divide it both side by exex

y−1=−x+1+Ce−x

Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Differential Equation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,