Position vector of a particle of mass m = 5 kg is given by r(t) = 3t³i+5j - 7t²k. What is its linear momentum at t = 2 s? G = 180i+0j 140k kg.m/s G = 36i + 5j - 28k kg.m/s + 0k kg.m/s G = 180i + 25j - 140k kg.m/s OG=0i+0j
Position vector of a particle of mass m = 5 kg is given by r(t) = 3t³i+5j - 7t²k. What is its linear momentum at t = 2 s? G = 180i+0j 140k kg.m/s G = 36i + 5j - 28k kg.m/s + 0k kg.m/s G = 180i + 25j - 140k kg.m/s OG=0i+0j
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
![**Problem Statement:**
Position vector of a particle of mass \( m = 5 \, \text{kg} \) is given by
\[ \mathbf{r}(t) = 3t^3 \mathbf{i} + 5t \mathbf{j} - 7t^2 \mathbf{k} \].
What is its linear momentum at \( t = 2 \, \text{s} \)?
**Options:**
- \( \mathbf{G} = 180\mathbf{i} + 0\mathbf{j} - 140\mathbf{k} \, \text{kg} \cdot \text{m/s} \)
- \( \mathbf{G} = 36\mathbf{i} + 5\mathbf{j} - 28\mathbf{k} \, \text{kg} \cdot \text{m/s} \)
- \( \mathbf{G} = 0\mathbf{i} + 0\mathbf{j} + 0\mathbf{k} \, \text{kg} \cdot \text{m/s} \)
- \( \mathbf{G} = 180\mathbf{i} + 25\mathbf{j} - 140\mathbf{k} \, \text{kg} \cdot \text{m/s} \)
**Explanation:**
To find the linear momentum \( \mathbf{G} \) of the particle, we need to follow these steps:
1. **Find the velocity vector \( \mathbf{v}(t) \) by differentiating the position vector \( \mathbf{r}(t) \) with respect to time \( t \)**:
\[ \mathbf{v}(t) = \frac{d\mathbf{r}(t)}{dt} = \frac{d}{dt} \left( 3t^3 \mathbf{i} + 5t \mathbf{j} - 7t^2 \mathbf{k} \right) \]
Differentiating each term:
\[ \mathbf{v}(t) = 9t^2 \mathbf{i} + 5 \mathbf{j} - 14t \mathbf{k} \]
2. **Evaluate the velocity vector at \( t = 2 \, \text{s} \)**:
\[ \mathbf{v}(2) =](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9c67b105-1a8e-425b-a8ad-195f3df08909%2Fee058f0e-10f0-4c5c-9fed-4c910b41cc1c%2Fy2394_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Problem Statement:**
Position vector of a particle of mass \( m = 5 \, \text{kg} \) is given by
\[ \mathbf{r}(t) = 3t^3 \mathbf{i} + 5t \mathbf{j} - 7t^2 \mathbf{k} \].
What is its linear momentum at \( t = 2 \, \text{s} \)?
**Options:**
- \( \mathbf{G} = 180\mathbf{i} + 0\mathbf{j} - 140\mathbf{k} \, \text{kg} \cdot \text{m/s} \)
- \( \mathbf{G} = 36\mathbf{i} + 5\mathbf{j} - 28\mathbf{k} \, \text{kg} \cdot \text{m/s} \)
- \( \mathbf{G} = 0\mathbf{i} + 0\mathbf{j} + 0\mathbf{k} \, \text{kg} \cdot \text{m/s} \)
- \( \mathbf{G} = 180\mathbf{i} + 25\mathbf{j} - 140\mathbf{k} \, \text{kg} \cdot \text{m/s} \)
**Explanation:**
To find the linear momentum \( \mathbf{G} \) of the particle, we need to follow these steps:
1. **Find the velocity vector \( \mathbf{v}(t) \) by differentiating the position vector \( \mathbf{r}(t) \) with respect to time \( t \)**:
\[ \mathbf{v}(t) = \frac{d\mathbf{r}(t)}{dt} = \frac{d}{dt} \left( 3t^3 \mathbf{i} + 5t \mathbf{j} - 7t^2 \mathbf{k} \right) \]
Differentiating each term:
\[ \mathbf{v}(t) = 9t^2 \mathbf{i} + 5 \mathbf{j} - 14t \mathbf{k} \]
2. **Evaluate the velocity vector at \( t = 2 \, \text{s} \)**:
\[ \mathbf{v}(2) =
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY