Position vector of a particle of mass m = 5 kg is given by r(t) = 3t³i+5j - 7t²k. What is its linear momentum at t = 2 s? G = 180i+0j 140k kg.m/s G = 36i + 5j - 28k kg.m/s + 0k kg.m/s G = 180i + 25j - 140k kg.m/s OG=0i+0j

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
**Problem Statement:**

Position vector of a particle of mass \( m = 5 \, \text{kg} \) is given by 
\[ \mathbf{r}(t) = 3t^3 \mathbf{i} + 5t \mathbf{j} - 7t^2 \mathbf{k} \]. 
What is its linear momentum at \( t = 2 \, \text{s} \)?

**Options:**
 
- \( \mathbf{G} = 180\mathbf{i} + 0\mathbf{j} - 140\mathbf{k} \, \text{kg} \cdot \text{m/s} \)
- \( \mathbf{G} = 36\mathbf{i} + 5\mathbf{j} - 28\mathbf{k} \, \text{kg} \cdot \text{m/s} \)
- \( \mathbf{G} = 0\mathbf{i} + 0\mathbf{j} + 0\mathbf{k} \, \text{kg} \cdot \text{m/s} \)
- \( \mathbf{G} = 180\mathbf{i} + 25\mathbf{j} - 140\mathbf{k} \, \text{kg} \cdot \text{m/s} \)

**Explanation:**

To find the linear momentum \( \mathbf{G} \) of the particle, we need to follow these steps:

1. **Find the velocity vector \( \mathbf{v}(t) \) by differentiating the position vector \( \mathbf{r}(t) \) with respect to time \( t \)**:
   \[ \mathbf{v}(t) = \frac{d\mathbf{r}(t)}{dt} = \frac{d}{dt} \left( 3t^3 \mathbf{i} + 5t \mathbf{j} - 7t^2 \mathbf{k} \right) \]

   Differentiating each term:
   \[ \mathbf{v}(t) = 9t^2 \mathbf{i} + 5 \mathbf{j} - 14t \mathbf{k} \]

2. **Evaluate the velocity vector at \( t = 2 \, \text{s} \)**:
   \[ \mathbf{v}(2) =
Transcribed Image Text:**Problem Statement:** Position vector of a particle of mass \( m = 5 \, \text{kg} \) is given by \[ \mathbf{r}(t) = 3t^3 \mathbf{i} + 5t \mathbf{j} - 7t^2 \mathbf{k} \]. What is its linear momentum at \( t = 2 \, \text{s} \)? **Options:** - \( \mathbf{G} = 180\mathbf{i} + 0\mathbf{j} - 140\mathbf{k} \, \text{kg} \cdot \text{m/s} \) - \( \mathbf{G} = 36\mathbf{i} + 5\mathbf{j} - 28\mathbf{k} \, \text{kg} \cdot \text{m/s} \) - \( \mathbf{G} = 0\mathbf{i} + 0\mathbf{j} + 0\mathbf{k} \, \text{kg} \cdot \text{m/s} \) - \( \mathbf{G} = 180\mathbf{i} + 25\mathbf{j} - 140\mathbf{k} \, \text{kg} \cdot \text{m/s} \) **Explanation:** To find the linear momentum \( \mathbf{G} \) of the particle, we need to follow these steps: 1. **Find the velocity vector \( \mathbf{v}(t) \) by differentiating the position vector \( \mathbf{r}(t) \) with respect to time \( t \)**: \[ \mathbf{v}(t) = \frac{d\mathbf{r}(t)}{dt} = \frac{d}{dt} \left( 3t^3 \mathbf{i} + 5t \mathbf{j} - 7t^2 \mathbf{k} \right) \] Differentiating each term: \[ \mathbf{v}(t) = 9t^2 \mathbf{i} + 5 \mathbf{j} - 14t \mathbf{k} \] 2. **Evaluate the velocity vector at \( t = 2 \, \text{s} \)**: \[ \mathbf{v}(2) =
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Basic Mechanics Problems
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY