Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![### Polar to Cartesian Coordinates Conversion
This educational material focuses on converting polar coordinates to Cartesian coordinates, complete with visual graph representations.
#### Question (b)
**Given Polar Coordinates:**
\[ \left( 3\sqrt{2}, \frac{\pi}{4} \right) \]
You are provided with four graphs labeled as Choice A, B, C, and D, each displaying a Cartesian plane with a plotted point. Your task is to identify which graph correctly represents the Cartesian conversion of the given polar coordinates.
The graphs have the following properties:
- Each graph contains x and y axes ranging from -4 to 4.
- A specific point is plotted in each graph indicating its (x, y) position.
**Explanation of the Graphs:**
1. **Choice A:**
- The point is plotted at approximately \((-2, -2)\).
2. **Choice B:**
- The point is plotted at approximately \((3, 0)\).
3. **Choice C:**
- The point is plotted at approximately \((2, 2)\).
4. **Choice D:**
- The point is plotted at approximately \((0, 3)\).
**Conversion Formula:**
To convert from polar (\(r, \theta\)) to Cartesian (\(x, y\)) coordinates:
- \(x = r \cdot \cos(\theta)\)
- \(y = r \cdot \sin(\theta)\)
Applying the conversion:
- \(r = 3\sqrt{2}\)
- \(\theta = \frac{\pi}{4}\)
Calculate:
- \(x = 3\sqrt{2} \cdot \cos\left(\frac{\pi}{4}\right) = 3\sqrt{2} \cdot \frac{\sqrt{2}}{2} = 3\)
- \(y = 3\sqrt{2} \cdot \sin\left(\frac{\pi}{4}\right) = 3\sqrt{2} \cdot \frac{\sqrt{2}}{2} = 3\)
Thus, the correct Cartesian coordinates are \((3, 3)\).
Using this information, select the correct graph.
#### (x, y) = \((\_\_\_)\)
#### Question (c)
**Given Polar Coordinates:**
\[ \left( -5, -\frac{\](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd29508f4-fc1e-4105-bc30-f2f3b3e53ddd%2F1a541395-1b9a-4be7-9132-b3b813c07ca2%2Fhb6vugd_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Polar to Cartesian Coordinates Conversion
This educational material focuses on converting polar coordinates to Cartesian coordinates, complete with visual graph representations.
#### Question (b)
**Given Polar Coordinates:**
\[ \left( 3\sqrt{2}, \frac{\pi}{4} \right) \]
You are provided with four graphs labeled as Choice A, B, C, and D, each displaying a Cartesian plane with a plotted point. Your task is to identify which graph correctly represents the Cartesian conversion of the given polar coordinates.
The graphs have the following properties:
- Each graph contains x and y axes ranging from -4 to 4.
- A specific point is plotted in each graph indicating its (x, y) position.
**Explanation of the Graphs:**
1. **Choice A:**
- The point is plotted at approximately \((-2, -2)\).
2. **Choice B:**
- The point is plotted at approximately \((3, 0)\).
3. **Choice C:**
- The point is plotted at approximately \((2, 2)\).
4. **Choice D:**
- The point is plotted at approximately \((0, 3)\).
**Conversion Formula:**
To convert from polar (\(r, \theta\)) to Cartesian (\(x, y\)) coordinates:
- \(x = r \cdot \cos(\theta)\)
- \(y = r \cdot \sin(\theta)\)
Applying the conversion:
- \(r = 3\sqrt{2}\)
- \(\theta = \frac{\pi}{4}\)
Calculate:
- \(x = 3\sqrt{2} \cdot \cos\left(\frac{\pi}{4}\right) = 3\sqrt{2} \cdot \frac{\sqrt{2}}{2} = 3\)
- \(y = 3\sqrt{2} \cdot \sin\left(\frac{\pi}{4}\right) = 3\sqrt{2} \cdot \frac{\sqrt{2}}{2} = 3\)
Thus, the correct Cartesian coordinates are \((3, 3)\).
Using this information, select the correct graph.
#### (x, y) = \((\_\_\_)\)
#### Question (c)
**Given Polar Coordinates:**
\[ \left( -5, -\frac{\
![**Title: Conversion of Polar Coordinates to Cartesian Coordinates**
**Objective:**
Plot the point defined by polar coordinates and find its Cartesian coordinates.
**Problem Statement:**
Given polar coordinates \( (3, \frac{3\pi}{2}) \), plot the point and determine its Cartesian coordinates.
**Graphical Representation:**
Four options labeled as Choice A, B, C, and D are provided, each with a distinct point plotted on a Cartesian coordinate system.
1. **Choice A:** Point is at \((-3, 0)\).
2. **Choice B:** Point is at \((0, -3)\).
3. **Choice C:** Point is at \((0, 3)\).
4. **Choice D:** Point is at \((3, 0)\).
**Conversion Formula:**
To convert from polar coordinates \((r, \theta)\) to Cartesian coordinates \((x, y)\):
- \( x = r \cos \theta \)
- \( y = r \sin \theta \)
**Solution Steps:**
1. **Calculate Cartesian Coordinates:**
- Given: \( r = 3 \), \( \theta = \frac{3\pi}{2} \)
- \( x = 3 \cos \frac{3\pi}{2} = 3 \times 0 = 0 \)
- \( y = 3 \sin \frac{3\pi}{2} = 3 \times (-1) = -3 \)
2. **Identify Correct Choice:**
- The correct Cartesian coordinates are \( (0, -3) \), which corresponds to Choice B.
**Final Answer:**
\( (x, y) = (0, -3) \)
This exercise aids in understanding the relationship between polar and Cartesian coordinate systems by practicing conversions and plotting points accurately.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd29508f4-fc1e-4105-bc30-f2f3b3e53ddd%2F1a541395-1b9a-4be7-9132-b3b813c07ca2%2Ftbh0gw_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Title: Conversion of Polar Coordinates to Cartesian Coordinates**
**Objective:**
Plot the point defined by polar coordinates and find its Cartesian coordinates.
**Problem Statement:**
Given polar coordinates \( (3, \frac{3\pi}{2}) \), plot the point and determine its Cartesian coordinates.
**Graphical Representation:**
Four options labeled as Choice A, B, C, and D are provided, each with a distinct point plotted on a Cartesian coordinate system.
1. **Choice A:** Point is at \((-3, 0)\).
2. **Choice B:** Point is at \((0, -3)\).
3. **Choice C:** Point is at \((0, 3)\).
4. **Choice D:** Point is at \((3, 0)\).
**Conversion Formula:**
To convert from polar coordinates \((r, \theta)\) to Cartesian coordinates \((x, y)\):
- \( x = r \cos \theta \)
- \( y = r \sin \theta \)
**Solution Steps:**
1. **Calculate Cartesian Coordinates:**
- Given: \( r = 3 \), \( \theta = \frac{3\pi}{2} \)
- \( x = 3 \cos \frac{3\pi}{2} = 3 \times 0 = 0 \)
- \( y = 3 \sin \frac{3\pi}{2} = 3 \times (-1) = -3 \)
2. **Identify Correct Choice:**
- The correct Cartesian coordinates are \( (0, -3) \), which corresponds to Choice B.
**Final Answer:**
\( (x, y) = (0, -3) \)
This exercise aids in understanding the relationship between polar and Cartesian coordinate systems by practicing conversions and plotting points accurately.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning