Plot the given data on Log-Log graph paper with depth on the X-axis and discharge on the Y-axis. a) Identify and give the value of the point where your best fit curve intersects the Y-axis at X = 1. b) Calculate the slope of the curve using (Log Y2 - Log Y1)/(Log X2 - Log X1) and mark on the graph. c) Comment on the shape of the curve and whether or not
Continuous Probability Distributions
Probability distributions are of two types, which are continuous probability distributions and discrete probability distributions. A continuous probability distribution contains an infinite number of values. For example, if time is infinite: you could count from 0 to a trillion seconds, billion seconds, so on indefinitely. A discrete probability distribution consists of only a countable set of possible values.
Normal Distribution
Suppose we had to design a bathroom weighing scale, how would we decide what should be the range of the weighing machine? Would we take the highest recorded human weight in history and use that as the upper limit for our weighing scale? This may not be a great idea as the sensitivity of the scale would get reduced if the range is too large. At the same time, if we keep the upper limit too low, it may not be usable for a large percentage of the population!
Plot the given data on Log-Log graph paper with depth on the X-axis and discharge on the Y-axis.
a) Identify and give the value of the point where your best fit curve intersects the Y-axis at X = 1.
b) Calculate the slope of the curve using (Log Y2 - Log Y1)/(Log X2 - Log X1) and mark on the graph.
c) Comment on the shape of the curve and whether or not a linear equation (Y = a +bX) will provide a reasonable fit to the data.
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 2 images