PLEASE HELP ME. kindly show all your work 1. Prove that∀k ∈ N, 1k + 2k + · · · + nk ∈ Θ(nk+1). 2. Suppose that the functions f1, f2, g1, g2 : N → R≥0 are such that f1 ∈ Θ(g1) and f2 ∈ Θ(g2).Prove that (f1 + f2) ∈ Θ(max{g1, g2}). Here (f1 + f2)(n) = f1(n) + f2(n) and max{g1, g2}(n) = max{g1(n), g2(n)}. 3. Let n ∈ N \ {0}. Describe the largest set of values n for which you think 2n < n!. Use induction toprove that your description is correct.Here m! stands for m factorial, the product of first m positive integers. 4. Prove that log2 n! ∈ O(n log2 n). Thank you. But please show all work and all steps

Operations Research : Applications and Algorithms
4th Edition
ISBN:9780534380588
Author:Wayne L. Winston
Publisher:Wayne L. Winston
Chapter11: Nonlinear Programming
Section11.3: Convex And Concave Functions
Problem 13P
icon
Related questions
Question

PLEASE HELP ME. kindly show all your work

1. Prove that
∀k ∈ N, 1k + 2k + · · · + nk ∈ Θ(nk+1).

2. Suppose that the functions f1, f2, g1, g2 : N → R≥0 are such that f1 ∈ Θ(g1) and f2 ∈ Θ(g2).
Prove that (f1 + f2) ∈ Θ(max{g1, g2}).


Here (f1 + f2)(n) = f1(n) + f2(n) and max{g1, g2}(n) = max{g1(n), g2(n)}.

3. Let n ∈ N \ {0}. Describe the largest set of values n for which you think 2n < n!. Use induction to
prove that your description is correct.
Here m! stands for m factorial, the product of first m positive integers.

4. Prove that log2 n! ∈ O(n log2 n).

Thank you. But please show all work and all steps

Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Concept of Randomized Approximation Algorithm
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Operations Research : Applications and Algorithms
Operations Research : Applications and Algorithms
Computer Science
ISBN:
9780534380588
Author:
Wayne L. Winston
Publisher:
Brooks Cole
C++ Programming: From Problem Analysis to Program…
C++ Programming: From Problem Analysis to Program…
Computer Science
ISBN:
9781337102087
Author:
D. S. Malik
Publisher:
Cengage Learning
Programming Logic & Design Comprehensive
Programming Logic & Design Comprehensive
Computer Science
ISBN:
9781337669405
Author:
FARRELL
Publisher:
Cengage
C++ for Engineers and Scientists
C++ for Engineers and Scientists
Computer Science
ISBN:
9781133187844
Author:
Bronson, Gary J.
Publisher:
Course Technology Ptr