Please help me with the questions below. In a tidal river, the time between high tide and low tide is 6.2 hours. At high tide the depth of the water is 17.2 feet, while at low tide the depth is 5.6 feet. Assume the water depth is a sinusoidal function of time (i.e., could model with either a cosine or sine function). Sketch a graph the depth of the water over time if there is a high tide at 12:00 noon. Assume that noon is represented by t = 0. Label your graph, including high tide and low tide. You must space your tick marks on the horizontal axis by one-quarter of the cycle. Graph two full periods of the function and label each point that is a maximum, minimum, or midline point. Write an equation for the function. You must show how to determine essential features such as the amplitude, period, midline, and any potential other shifts. A boat requires a depth of 8 feet to sail and is docked at 12:00 noon. What is the latest time in the afternoon, the boat can set sail? Your answer should be accurate to the nearest minute. You should note that there is something intentionally vague about this problem and some missing information. You should consider your graph and state any assumptions you are making that clarify your solution. You must provide an analytical solution. You can appeal to a graph for help, but you must have at least an analytical portion of your solution that finds one solution/intersection point.
Please help me with the questions below. In a tidal river, the time between high tide and low tide is 6.2 hours. At high tide the depth of the water is 17.2 feet, while at low tide the depth is 5.6 feet. Assume the water depth is a sinusoidal function of time (i.e., could model with either a cosine or sine function). Sketch a graph the depth of the water over time if there is a high tide at 12:00 noon. Assume that noon is represented by t = 0. Label your graph, including high tide and low tide. You must space your tick marks on the horizontal axis by one-quarter of the cycle. Graph two full periods of the function and label each point that is a maximum, minimum, or midline point. Write an equation for the function. You must show how to determine essential features such as the amplitude, period, midline, and any potential other shifts. A boat requires a depth of 8 feet to sail and is docked at 12:00 noon. What is the latest time in the afternoon, the boat can set sail? Your answer should be accurate to the nearest minute. You should note that there is something intentionally vague about this problem and some missing information. You should consider your graph and state any assumptions you are making that clarify your solution. You must provide an analytical solution. You can appeal to a graph for help, but you must have at least an analytical portion of your solution that finds one solution/intersection point.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Please help me with the questions below.
In a tidal river, the time between high tide and low tide is 6.2 hours. At high tide the depth of the water is 17.2 feet, while at low tide the depth is 5.6 feet. Assume the water depth is a sinusoidal function of time (i.e., could model with either a cosine or sine function).
- Sketch a graph the depth of the water over time if there is a high tide at 12:00 noon. Assume that noon is represented by t = 0. Label your graph, including high tide and low tide. You must space your tick marks on the horizontal axis by one-quarter of the cycle. Graph two full periods of the function and label each point that is a maximum, minimum, or midline point.
- Write an equation for the function. You must show how to determine essential features such as the amplitude, period, midline, and any potential other shifts.
- A boat requires a depth of 8 feet to sail and is docked at 12:00 noon. What is the latest time in the afternoon, the boat can set sail? Your answer should be accurate to the nearest minute. You should note that there is something intentionally vague about this problem and some missing information. You should consider your graph and state any assumptions you are making that clarify your solution. You must provide an analytical solution. You can appeal to a graph for help, but you must have at least an analytical portion of your solution that finds one solution/intersection point.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 37 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,