Please don’t copy the answer from any online sources. Please show ever steps clearly. Just answer 4

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Please don’t copy the answer from any online sources. Please show ever steps clearly. Just answer 4
### Problem 4

**Objective:**
Solve the initial value problem given below.

**Equation:**

\[
U_t = k U_{xx} + a x \quad (0 < x < c, \, t > 0)
\]

**With Conditions:**

- \( U(0, t) = 0 \)
- \( U(c, t) = 0 \)
- \( U(x, 0) = 0 \)

Here, \( k \) and \( a \) are positive constants.

**Useful Integral:**

\[
\int_0^c x(c^2 - x^2) \sin \left( \frac{n \pi}{c} x \right) \, dx = (-1)^{n+1} \frac{6c^4}{n^3 \pi^3}
\]

**Expression for \( x \):**

\[
x = \frac{2c}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \left( \frac{n\pi}{c} x \right)
\]

**Answer:**

\[
U(x, t) = \frac{a}{6k} x(c^2 - x^2) + \frac{2c^3 a}{k \pi^3} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^3} \sin \left( \frac{n \pi}{c} x \right) e^{-\frac{kn^2 \pi^2}{c^2} t}
\]

**Note:**

\[
\lim_{t \to \infty} U(x, t) = \frac{a}{6k} x(c^2 - x^2)
\]

---

### Problem 5

**Objective:**
Solve the following initial and boundary value problem.

**Equation:**

\[
U_t - 2kt U_{xx} = 0, \quad 0 < x < \pi, \, t > 0
\]

**Conditions:**

- \( U(0, t) = U(\pi, t) = 0, \quad t \geq 0 \)
- \( U(x, 0) = 2
Transcribed Image Text:### Problem 4 **Objective:** Solve the initial value problem given below. **Equation:** \[ U_t = k U_{xx} + a x \quad (0 < x < c, \, t > 0) \] **With Conditions:** - \( U(0, t) = 0 \) - \( U(c, t) = 0 \) - \( U(x, 0) = 0 \) Here, \( k \) and \( a \) are positive constants. **Useful Integral:** \[ \int_0^c x(c^2 - x^2) \sin \left( \frac{n \pi}{c} x \right) \, dx = (-1)^{n+1} \frac{6c^4}{n^3 \pi^3} \] **Expression for \( x \):** \[ x = \frac{2c}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \left( \frac{n\pi}{c} x \right) \] **Answer:** \[ U(x, t) = \frac{a}{6k} x(c^2 - x^2) + \frac{2c^3 a}{k \pi^3} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^3} \sin \left( \frac{n \pi}{c} x \right) e^{-\frac{kn^2 \pi^2}{c^2} t} \] **Note:** \[ \lim_{t \to \infty} U(x, t) = \frac{a}{6k} x(c^2 - x^2) \] --- ### Problem 5 **Objective:** Solve the following initial and boundary value problem. **Equation:** \[ U_t - 2kt U_{xx} = 0, \quad 0 < x < \pi, \, t > 0 \] **Conditions:** - \( U(0, t) = U(\pi, t) = 0, \quad t \geq 0 \) - \( U(x, 0) = 2
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,