ple give for drinking coffee is “alertness” or “energy”. This could be the case for kids who drink coffee. Or they could be groggier from a lack of sleep due to coffee. We asked n1=50 17-year-old kids who drink coffee if they “felt alert” x1=30 answered yes, we then asked n2=50 kids who don’t drink coffee and x2=20 of the kids answered that they the “felt alert”. We would like to compare these two proportions. a. What are the estimated proportions? b. What are the null and alternative hypothesis? c. Perform the test, what do you conclude? Another way we could look at this would be to do a test of association on the 2x2 table constructed from this data (see Chapters 17 Section 3 pages 573-579:). d. Please construct the table e. What is the new null and alternative hypothesis? f. What are the expected counts (under the null hypothesis) g. What are the observed minus expected counts? h. What is the test statistic? How many degree of freedom? i. What is the critical value? What do you conclude?
Addition Rule of Probability
It simply refers to the likelihood of an event taking place whenever the occurrence of an event is uncertain. The probability of a single event can be calculated by dividing the number of successful trials of that event by the total number of trials.
Expected Value
When a large number of trials are performed for any random variable ‘X’, the predicted result is most likely the mean of all the outcomes for the random variable and it is known as expected value also known as expectation. The expected value, also known as the expectation, is denoted by: E(X).
Probability Distributions
Understanding probability is necessary to know the probability distributions. In statistics, probability is how the uncertainty of an event is measured. This event can be anything. The most common examples include tossing a coin, rolling a die, or choosing a card. Each of these events has multiple possibilities. Every such possibility is measured with the help of probability. To be more precise, the probability is used for calculating the occurrence of events that may or may not happen. Probability does not give sure results. Unless the probability of any event is 1, the different outcomes may or may not happen in real life, regardless of how less or how more their probability is.
Basic Probability
The simple definition of probability it is a chance of the occurrence of an event. It is defined in numerical form and the probability value is between 0 to 1. The probability value 0 indicates that there is no chance of that event occurring and the probability value 1 indicates that the event will occur. Sum of the probability value must be 1. The probability value is never a negative number. If it happens, then recheck the calculation.
Another way we could look at this would be to do a test of association on the 2x2 table constructed from this data (see Chapters 17 Section 3 pages 573-579:).
Trending now
This is a popular solution!
Step by step
Solved in 2 steps