Pk) = )(K- (-) = a. A table of values for f(r) = sin(xx) is: 1. * f(x) 1.0 0.0 1.5 -1.0 2.0 0.0 Use quadratic interpolation to estimate f(1.6). Rk) = (K-2) 4x²_12x +8 (15-1) (15-2) (16) = 0.6 (-0,4) ) = (-0 6.5 (-05) '(4)=(-0,96 b. Use the Lagrange error formula to obtain a reasonable bound on the error in your estimate pa(1.6) of f(1.6). -t' car (1€) 3! 0,124 c. Calculate the exact error f(1.6) - Pa(1.6).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Answer is given BUT need full detailed steps and process since I don't understand the concept.

 

### Interpolation and Error Estimation for \( f(x) = \sin(\pi x) \)

#### 1. Table of Values

For the function \( f(x) = \sin(\pi x) \), the given data points are:

\[
\begin{array}{c|c}
x & f(x) \\
\hline
0 & 0 \\
1.0 & 0.0 \\
1.5 & -1.0 \\
2.0 & 0.0 \\
\end{array}
\]

#### a. Quadratic Interpolation

To estimate \( f(1.6) \), use the quadratic interpolation polynomial:

\[
p_2(x) = \frac{(x-1)(x-2)}{(1.5-1)(1.5-2)}(-1) = 4x^2 - 12x + 8
\]

Calculating for \( x = 1.6 \):

\[
p_2(1.6) = 0.6 \cdot (-0.6) \cdot (1) = -0.96
\]

#### b. Error Estimation Using Lagrange Formula

To find a reasonable error bound in the estimate \( p_2(1.6) \), use the Lagrange error formula:

\[
f(x) - p_2(x) = \frac{f^{(3)}(\xi)}{3!}(x-1)(x-1.5)(x-2)
\]

Estimating the bound:

\[
\left| \frac{-\pi^3 \cos(\pi \xi)}{6} \right|\leq \frac{\pi^3}{6} (0.024) \approx 0.124
\]

Here, \( 1 < \xi < 2 \).

#### c. Exact Error Calculation

Calculate \( f(1.6) \) using \( f(1.6) = \sin(1.6\pi) \):

\[
f(1.6) = -0.951
\]

The exact error is:

\[
f(1.6) - p_2(1.6) = -0.951 - (-0.96) = 0.009
\]

### Summary

A quadratic interpolation was used to estimate \( f
Transcribed Image Text:### Interpolation and Error Estimation for \( f(x) = \sin(\pi x) \) #### 1. Table of Values For the function \( f(x) = \sin(\pi x) \), the given data points are: \[ \begin{array}{c|c} x & f(x) \\ \hline 0 & 0 \\ 1.0 & 0.0 \\ 1.5 & -1.0 \\ 2.0 & 0.0 \\ \end{array} \] #### a. Quadratic Interpolation To estimate \( f(1.6) \), use the quadratic interpolation polynomial: \[ p_2(x) = \frac{(x-1)(x-2)}{(1.5-1)(1.5-2)}(-1) = 4x^2 - 12x + 8 \] Calculating for \( x = 1.6 \): \[ p_2(1.6) = 0.6 \cdot (-0.6) \cdot (1) = -0.96 \] #### b. Error Estimation Using Lagrange Formula To find a reasonable error bound in the estimate \( p_2(1.6) \), use the Lagrange error formula: \[ f(x) - p_2(x) = \frac{f^{(3)}(\xi)}{3!}(x-1)(x-1.5)(x-2) \] Estimating the bound: \[ \left| \frac{-\pi^3 \cos(\pi \xi)}{6} \right|\leq \frac{\pi^3}{6} (0.024) \approx 0.124 \] Here, \( 1 < \xi < 2 \). #### c. Exact Error Calculation Calculate \( f(1.6) \) using \( f(1.6) = \sin(1.6\pi) \): \[ f(1.6) = -0.951 \] The exact error is: \[ f(1.6) - p_2(1.6) = -0.951 - (-0.96) = 0.009 \] ### Summary A quadratic interpolation was used to estimate \( f
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,