Consider the wave function for the ground state harmonic oscillator: \[ \psi(x) = \left( \frac{m \omega}{\pi \hbar} \right)^{1/4} e^{-m \omega x^2 / (2 \hbar)} \] A. What is the quantum number for this ground state? \( \nu = \) \( \boxed{0} \) B. Enter the integrand you'd need to evaluate \(\langle x \rangle\) for the ground state harmonic oscillator wave function: \[ \langle x \rangle = \int_{-\infty}^{\infty} \left( \left( \frac{m \omega}{\pi \hbar} \right)^{1/2} e^{-m \omega x^2 / \hbar} \right) x \, dx \] C. Evaluate the integral in part B. What do you obtain for the average displacement? \( \boxed{0} \)

icon
Related questions
Question
Consider the wave function for the ground state harmonic oscillator:

\[
\psi(x) = \left( \frac{m \omega}{\pi \hbar} \right)^{1/4} e^{-m \omega x^2 / (2 \hbar)}
\]

A. What is the quantum number for this ground state? \( \nu = \) \( \boxed{0} \)

B. Enter the integrand you'd need to evaluate \(\langle x \rangle\) for the ground state harmonic oscillator wave function:

\[
\langle x \rangle = \int_{-\infty}^{\infty} \left( \left( \frac{m \omega}{\pi \hbar} \right)^{1/2} e^{-m \omega x^2 / \hbar} \right) x \, dx
\]

C. Evaluate the integral in part B. What do you obtain for the average displacement? \( \boxed{0} \)
Transcribed Image Text:Consider the wave function for the ground state harmonic oscillator: \[ \psi(x) = \left( \frac{m \omega}{\pi \hbar} \right)^{1/4} e^{-m \omega x^2 / (2 \hbar)} \] A. What is the quantum number for this ground state? \( \nu = \) \( \boxed{0} \) B. Enter the integrand you'd need to evaluate \(\langle x \rangle\) for the ground state harmonic oscillator wave function: \[ \langle x \rangle = \int_{-\infty}^{\infty} \left( \left( \frac{m \omega}{\pi \hbar} \right)^{1/2} e^{-m \omega x^2 / \hbar} \right) x \, dx \] C. Evaluate the integral in part B. What do you obtain for the average displacement? \( \boxed{0} \)
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions