Your answer is partially correct. Two disks are mounted (like a merry-go-round) on low-friction bearings on the same axle and can be brought together so that they couple and rotate as one unit. The first disk, with rotational inertia 2.58 kg-m2 about its central axis, is set spinning counterclockwise (which may be taken as the positive direction) at 140 rev/min. The second disk, with rotational inertia 7.60 kg•m² about its central axis, is set spinning counterclockwise at 941 rev/min. They then couple together. (a) What is their angular speed after coupling? If instead the second disk is set spinning clockwise at 941 rev/min, what are their (b) angular velocity (using the correct sign for direction) and (c) direction of rotation after they couple together? (a) Number i 77.24 Units N-m/rad (b) Number i -69.82 Units rev/s (c) clockwise
Angular speed, acceleration and displacement
Angular acceleration is defined as the rate of change in angular velocity with respect to time. It has both magnitude and direction. So, it is a vector quantity.
Angular Position
Before diving into angular position, one should understand the basics of position and its importance along with usage in day-to-day life. When one talks of position, it’s always relative with respect to some other object. For example, position of earth with respect to sun, position of school with respect to house, etc. Angular position is the rotational analogue of linear position.
Can you help me with this problem. The ones that has the red lines.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images