Perform the operation and leave the result in trigonometric form. (Let 0se< 360°.) 15(cos 116° +i sin 116°) 3(cos 146° + i sin 146°)

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Trigonometric Form Complex Number Operation

**Problem Statement:**
Perform the operation and leave the result in trigonometric form. (Let \( 0 \leq \theta < 360^\circ \)).

\[ 
\frac{15(\cos 116^\circ + i \sin 116^\circ)}{3(\cos 146^\circ + i \sin 146^\circ)}
\]

In this problem, you are given a division of two complex numbers represented in trigonometric form. The general formula for a complex number in trigonometric form is:

\[ z = r(\cos \theta + i \sin \theta) \]

### Solution Steps:

1. **Identify the Magnitudes and Arguments**:
   - For the numerator:  \( 15(\cos 116^\circ + i \sin 116^\circ) \)
     - Magnitude \( r_1 = 15 \)
     - Argument \( \theta_1 = 116^\circ \)

   - For the denominator: \( 3(\cos 146^\circ + i \sin 146^\circ) \)
     - Magnitude \( r_2 = 3 \)
     - Argument \( \theta_2 = 146^\circ \)

2. **Divide the Magnitudes**:
   \[ \frac{r_1}{r_2} = \frac{15}{3} = 5 \]

3. **Subtract the Arguments**:
   \[ \theta = \theta_1 - \theta_2 = 116^\circ - 146^\circ = -30^\circ \]

   Since the angle must be between \( 0^\circ \) and \( 360^\circ \), we convert \(-30^\circ\) to a positive angle:
   \[ -30^\circ + 360^\circ = 330^\circ \]

4. **Construct the Result**:
   \[ \frac{15(\cos 116^\circ + i \sin 116^\circ)}{3(\cos 146^\circ + i \sin 146^\circ)} = 5 \left( \cos 330^\circ + i \sin 330^\circ \right) \]

### Final Answer:

\[ 
\boxed{5 \left( \cos 330^\circ + i \sin 330^\circ \right)}
\]

This operation simplifies the given
Transcribed Image Text:### Trigonometric Form Complex Number Operation **Problem Statement:** Perform the operation and leave the result in trigonometric form. (Let \( 0 \leq \theta < 360^\circ \)). \[ \frac{15(\cos 116^\circ + i \sin 116^\circ)}{3(\cos 146^\circ + i \sin 146^\circ)} \] In this problem, you are given a division of two complex numbers represented in trigonometric form. The general formula for a complex number in trigonometric form is: \[ z = r(\cos \theta + i \sin \theta) \] ### Solution Steps: 1. **Identify the Magnitudes and Arguments**: - For the numerator: \( 15(\cos 116^\circ + i \sin 116^\circ) \) - Magnitude \( r_1 = 15 \) - Argument \( \theta_1 = 116^\circ \) - For the denominator: \( 3(\cos 146^\circ + i \sin 146^\circ) \) - Magnitude \( r_2 = 3 \) - Argument \( \theta_2 = 146^\circ \) 2. **Divide the Magnitudes**: \[ \frac{r_1}{r_2} = \frac{15}{3} = 5 \] 3. **Subtract the Arguments**: \[ \theta = \theta_1 - \theta_2 = 116^\circ - 146^\circ = -30^\circ \] Since the angle must be between \( 0^\circ \) and \( 360^\circ \), we convert \(-30^\circ\) to a positive angle: \[ -30^\circ + 360^\circ = 330^\circ \] 4. **Construct the Result**: \[ \frac{15(\cos 116^\circ + i \sin 116^\circ)}{3(\cos 146^\circ + i \sin 146^\circ)} = 5 \left( \cos 330^\circ + i \sin 330^\circ \right) \] ### Final Answer: \[ \boxed{5 \left( \cos 330^\circ + i \sin 330^\circ \right)} \] This operation simplifies the given
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Roots
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning