PCtrrminc Arc Lengtn. X= 3 sin(t) y= 3 COS (t)

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Topic: Calculating Arc Length**

**Objective: Determine the Arc Length**

**Parametric Equations:**

- \( x = 3 \sin(t) \)
- \( y = 3 \cos(t) \)

**Interval:**

- \( 0 \leq t \leq 2\pi \)

**Explanation:**
To find the arc length of a parametric curve defined by the equations \( x = 3 \sin(t) \) and \( y = 3 \cos(t) \) over the interval \( 0 \) to \( 2\pi \), one must use the arc length formula for parametric equations:

\[
L = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt
\]

In this scenario, compute the derivatives \( \frac{dx}{dt} \) and \( \frac{dy}{dt} \), substitute them into the formula, and evaluate the integral over the given interval.
Transcribed Image Text:**Topic: Calculating Arc Length** **Objective: Determine the Arc Length** **Parametric Equations:** - \( x = 3 \sin(t) \) - \( y = 3 \cos(t) \) **Interval:** - \( 0 \leq t \leq 2\pi \) **Explanation:** To find the arc length of a parametric curve defined by the equations \( x = 3 \sin(t) \) and \( y = 3 \cos(t) \) over the interval \( 0 \) to \( 2\pi \), one must use the arc length formula for parametric equations: \[ L = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt \] In this scenario, compute the derivatives \( \frac{dx}{dt} \) and \( \frac{dy}{dt} \), substitute them into the formula, and evaluate the integral over the given interval.
Expert Solution
Step 1

Calculus homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning