Particles accelerators such as the Large Hadron Collider (LHC) can accelerate particles up to tremendous energies. Suppose the LHC accelerates alpha particles (a.k.a. helium nuclei with a charge of +2e and a mass of 6.645 x 1027 kg) with a kinetic energy of 7.5 TeV*, what would the speed of one particle be if relativistic effects** are ignored? Give your answer in units of Gm/s. *T as in Tera, for 1012. "eV" stands for "electron volt," which is a non-Sl unit of energy equal to what one electron would gain after travelling through 1V. 1eV = 1.602 x 1019 J. **Special relativity is necessary to correctly account for the limiting speed of light, which is about 3 x 10° m/s. Note that in ignoring this effect and applying Newtonian mechanics (what you learned in Phys1210 or equivalent), you'll be getting a speed way above 0.3 Gm/s. That's just how insanely energetic the LHC is.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
Particles accelerators such as the Large Hadron Collider (LHC) can accelerate particles up to tremendous energies. Suppose the LHC accelerates alpha particles (a.k.a. helium nuclei with a charge of +2e and a mass of 6.645 x 10^-27 kg) with a kinetic energy of 7.5 TeV*, what would the speed of one particle be if relativistic effects** are ignored?

Give your answer in units of Gm/s.

*T as in Tera, for 10^12. “eV” stands for “electron volt,” which is a non-SI unit of energy equal to what one electron would gain after travelling through 1V. 1eV = 1.602 x 10^-19 J.

**Special relativity is necessary to correctly account for the limiting speed of light, which is about 3 x 10^8 m/s. Note that in ignoring this effect and applying Newtonian mechanics (what you learned in Phys1210 or equivalent), you’ll be getting a speed way above 0.3 Gm/s. That’s just how insanely energetic the LHC is.
Transcribed Image Text:Particles accelerators such as the Large Hadron Collider (LHC) can accelerate particles up to tremendous energies. Suppose the LHC accelerates alpha particles (a.k.a. helium nuclei with a charge of +2e and a mass of 6.645 x 10^-27 kg) with a kinetic energy of 7.5 TeV*, what would the speed of one particle be if relativistic effects** are ignored? Give your answer in units of Gm/s. *T as in Tera, for 10^12. “eV” stands for “electron volt,” which is a non-SI unit of energy equal to what one electron would gain after travelling through 1V. 1eV = 1.602 x 10^-19 J. **Special relativity is necessary to correctly account for the limiting speed of light, which is about 3 x 10^8 m/s. Note that in ignoring this effect and applying Newtonian mechanics (what you learned in Phys1210 or equivalent), you’ll be getting a speed way above 0.3 Gm/s. That’s just how insanely energetic the LHC is.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON