P1B.1 A rotating slotted-disc apparatus consists of five coaxial 5.0 cm diameter discs separated by 1.0 cm, the radial slots being displaced by 2.0° between neighbours. The relative intensities, I, of the detected beam of Kr atoms for two different temperatures and at a series of rotation rates were as follows: v/Hz 20 40 80 100 120 I (40 K) 0.846 0.513 0.069 0.015 0.002 I (100 K) 0.592 0.485 0.217 0.119 0.057 Find the distributions of molecular velocities, f(v,), at these temperatures, and check that they conform to the theoretical prediction for a one-dimensional system for this low-pressure, collision-free system.

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
Question
P1B.1 A rotating slotted-disc apparatus consists of five coaxial 5.0 cm diameter
discs separated by 1.0 cm, the radial slots being displaced by 2.0° between
neighbours. The relative intensities, I, of the detected beam of Kr atoms for
two different temperatures and at a series of rotation rates were as follows:
v/Hz
20
40
80
100
120
I (40 K)
0.846
0.513
0.069
0.015
0.002
I (100 K)
0.592
0.485
0.217
0.119
0.057
Find the distributions of molecular velocities, f(v,), at these temperatures, and
check that they conform to the theoretical prediction for a one-dimensional
system for this low-pressure, collision-free system.
Transcribed Image Text:P1B.1 A rotating slotted-disc apparatus consists of five coaxial 5.0 cm diameter discs separated by 1.0 cm, the radial slots being displaced by 2.0° between neighbours. The relative intensities, I, of the detected beam of Kr atoms for two different temperatures and at a series of rotation rates were as follows: v/Hz 20 40 80 100 120 I (40 K) 0.846 0.513 0.069 0.015 0.002 I (100 K) 0.592 0.485 0.217 0.119 0.057 Find the distributions of molecular velocities, f(v,), at these temperatures, and check that they conform to the theoretical prediction for a one-dimensional system for this low-pressure, collision-free system.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY