P11C.15 The rotational constant for a diatomic molecule in the vibrational state with quantum number v typically fits the expression B, = B,- a(v+}), where B, is the rotational constant corresponding to the equilibrium bond length. For the interhalogen molecule IF it is found that B, = 0.279 71 cm and a = 0.187 m (note the change of units). Calculate B, and B, and use these values to calculate the wavenumbers of the transitions originating from J= 3 of the P and R branches. You will need the following additional information: v = 610.258 cm and x,ỹ = 3.141 cm. Estimate the dissociation energy of the IF molecule.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
P11C.15 The rotational constant for a diatomic molecule in the vibrational
state with quantum number v typically fits the expression B, = B,- a(v+}),
where B, is the rotational constant corresponding to the equilibrium bond
length. For the interhalogen molecule IF it is found that B, = 0.279 71 cm
and a = 0.187 m (note the change of units). Calculate B, and B, and use these
values to calculate the wavenumbers of the transitions originating from J= 3
of the P and R branches. You will need the following additional information:
v = 610.258 cm and x,ỹ = 3.141 cm. Estimate the dissociation energy of the
IF molecule.
Transcribed Image Text:P11C.15 The rotational constant for a diatomic molecule in the vibrational state with quantum number v typically fits the expression B, = B,- a(v+}), where B, is the rotational constant corresponding to the equilibrium bond length. For the interhalogen molecule IF it is found that B, = 0.279 71 cm and a = 0.187 m (note the change of units). Calculate B, and B, and use these values to calculate the wavenumbers of the transitions originating from J= 3 of the P and R branches. You will need the following additional information: v = 610.258 cm and x,ỹ = 3.141 cm. Estimate the dissociation energy of the IF molecule.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Gibbs free Energy
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON