p(1) p (1) [p(2) p'(2)] 1. Let T: P₂ →M²×² be defined by T (p(x))= relative to the following bases. (i.e. find [7]}') B=(x+1, 2x²+x+2, x²+2x+2) and B' = Find the matrix of T 2 2 (16 36 36 3
p(1) p (1) [p(2) p'(2)] 1. Let T: P₂ →M²×² be defined by T (p(x))= relative to the following bases. (i.e. find [7]}') B=(x+1, 2x²+x+2, x²+2x+2) and B' = Find the matrix of T 2 2 (16 36 36 3
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Please provide detailed explantion with english as well.
Thank you
![## Linear Algebra: Transformations and Matrices
### Problem Statement
1. Let \( T: P_2 \to M^{2 \times 2} \) be defined by:
\[ T(p(x)) = \begin{bmatrix}
p(1) & p'(1) \\
p(2) & p'(2)
\end{bmatrix} \]
Find the matrix of \( T \) relative to the following bases (i.e., find \( [T]^B_{B'} \)).
Given Bases:
\[ B = \{x + 1, 2x^2 + x + 2, x^2 + 2x + 2\} \]
\[ B' = \left\{
\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix},
\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix},
\begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix},
\begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix}
\right\} \]
### Explanation
- **Transformation \( T \)**: This transformation maps polynomials of degree at most 2 (i.e., polynomials in \( P_2 \)) to 2x2 matrices.
- **Matrix Representation**: The goal is to express the linear transformation \( T \) in matrix form. This involves finding a matrix representation of \( T \) relative to given bases \( B \) and \( B' \).
- **Bases \( B \) and \( B' \)**:
- \( B \) is a basis for the polynomial space \( P_2 \) and consists of three polynomials.
- \( B' \) is a basis for the space of \( 2 \times 2 \) matrices and consists of four matrices.
### Steps to Solve:
1. **Apply \( T \) to Each Basis Element of \( B \)**:
- Find the image of each basis polynomial under \( T \).
2. **Express Resulting Matrices in Terms of \( B' \)**:
- Write each result as a linear combination of the matrices in \( B' \).
3. **Form the Matrix Representation**:
- Use](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fe354d500-dc10-4e3d-a060-42009e500b8b%2F3c9bf6bf-af29-4a32-ac89-7a9fe2539ca8%2Fj6pb1pg_processed.jpeg&w=3840&q=75)
Transcribed Image Text:## Linear Algebra: Transformations and Matrices
### Problem Statement
1. Let \( T: P_2 \to M^{2 \times 2} \) be defined by:
\[ T(p(x)) = \begin{bmatrix}
p(1) & p'(1) \\
p(2) & p'(2)
\end{bmatrix} \]
Find the matrix of \( T \) relative to the following bases (i.e., find \( [T]^B_{B'} \)).
Given Bases:
\[ B = \{x + 1, 2x^2 + x + 2, x^2 + 2x + 2\} \]
\[ B' = \left\{
\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix},
\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix},
\begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix},
\begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix}
\right\} \]
### Explanation
- **Transformation \( T \)**: This transformation maps polynomials of degree at most 2 (i.e., polynomials in \( P_2 \)) to 2x2 matrices.
- **Matrix Representation**: The goal is to express the linear transformation \( T \) in matrix form. This involves finding a matrix representation of \( T \) relative to given bases \( B \) and \( B' \).
- **Bases \( B \) and \( B' \)**:
- \( B \) is a basis for the polynomial space \( P_2 \) and consists of three polynomials.
- \( B' \) is a basis for the space of \( 2 \times 2 \) matrices and consists of four matrices.
### Steps to Solve:
1. **Apply \( T \) to Each Basis Element of \( B \)**:
- Find the image of each basis polynomial under \( T \).
2. **Express Resulting Matrices in Terms of \( B' \)**:
- Write each result as a linear combination of the matrices in \( B' \).
3. **Form the Matrix Representation**:
- Use
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)