P 1. Use the integral test to determine whether the series En-2 n(In(n))3/4 convergent or divergent. is
P 1. Use the integral test to determine whether the series En-2 n(In(n))3/4 convergent or divergent. is
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![---
### P 1.
Use the integral test to determine whether the series
\[ \sum_{n=2}^{\infty} \frac{1}{n (\ln(n))^{3/4}} \]
is convergent or divergent.
### Explanation
The task involves applying the integral test to analyze the series. According to the integral test, if \( f(x) \) is a continuous, positive, and decreasing function for \( x \geq a \), and \( a_n = f(n) \), then the series \( \sum_{n=a}^{\infty} a_n \) converges if and only if the improper integral \( \int_{a}^{\infty} f(x)\,dx \) converges.
In this given example:
\[ a_n = \frac{1}{n (\ln(n))^{3/4}} \]
we need to set up and evaluate the corresponding integral:
\[ \int_{2}^{\infty} \frac{1}{x (\ln(x))^{3/4}}\,dx \]
Calculating and analyzing the convergence of this integral will determine whether the series converges or diverges.
---](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fa216c9ee-ecac-40ec-b583-a361985d4bbd%2F3fc0fcdb-7bb0-468c-91d4-f5c87063ae62%2F28xhvac_processed.jpeg&w=3840&q=75)
Transcribed Image Text:---
### P 1.
Use the integral test to determine whether the series
\[ \sum_{n=2}^{\infty} \frac{1}{n (\ln(n))^{3/4}} \]
is convergent or divergent.
### Explanation
The task involves applying the integral test to analyze the series. According to the integral test, if \( f(x) \) is a continuous, positive, and decreasing function for \( x \geq a \), and \( a_n = f(n) \), then the series \( \sum_{n=a}^{\infty} a_n \) converges if and only if the improper integral \( \int_{a}^{\infty} f(x)\,dx \) converges.
In this given example:
\[ a_n = \frac{1}{n (\ln(n))^{3/4}} \]
we need to set up and evaluate the corresponding integral:
\[ \int_{2}^{\infty} \frac{1}{x (\ln(x))^{3/4}}\,dx \]
Calculating and analyzing the convergence of this integral will determine whether the series converges or diverges.
---
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)