ôu a?u Let u be the unique solution of where (x, t) e (0, 1) x (0, 0), u(x, 0) = %3D sin Tx, x e (0, 1) u(0, t) = u(1, t) = 0t e (0, 0) Then which of the following are true? (a) 3 (x, t) e (0, 1) × (0, o) s.t. u(x, t) = 0 ди (x,1) =0 ốt (b) 3 (x, t) e (0, 1) x (0, c0) s.t. (c) The function e'u(x, t) is bounded for (x, t) e (0, 1) x (0, 0)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

solve correct both, handwritten

If u(x, t) is a solution of u, = uxx
* u(x, 0) = 1+ x+ sin (ax) cos (Tx)
u(0, t) = 1, u(1, t) = 2. Then
0 <x<1
t>0
(a) u
2 4
3
3
(b) u
4 4
1
-37?
+-e
4 2
1
--472
(c) u
(e)
(d) и
4
+-e
4
Transcribed Image Text:If u(x, t) is a solution of u, = uxx * u(x, 0) = 1+ x+ sin (ax) cos (Tx) u(0, t) = 1, u(1, t) = 2. Then 0 <x<1 t>0 (a) u 2 4 3 3 (b) u 4 4 1 -37? +-e 4 2 1 --472 (c) u (e) (d) и 4 +-e 4
ôu a?u
Let u be the unique solution of
where (x, t) e (0, 1) x (0, 0), u(x, 0) =
sin Tx, x e (0, 1) u(0, t) = u(1, t) 0t e (0, 0) Then which of the following are true?
!!
(a) 3 (x, t) e (0, 1) x (0, 0) s.t. u(x, t) = 0
(b) 3 (x, t) e (0, 1) x (0, o) s.t.
ди
(x,()%3D0
(c) The function e'u(x, t) is bounded for (x, t) e (0, 1) × (0, 0)
(d) 3 (x, t) e (0, 1) x(0, 0) s.t. u(x, t) > 1
Transcribed Image Text:ôu a?u Let u be the unique solution of where (x, t) e (0, 1) x (0, 0), u(x, 0) = sin Tx, x e (0, 1) u(0, t) = u(1, t) 0t e (0, 0) Then which of the following are true? !! (a) 3 (x, t) e (0, 1) x (0, 0) s.t. u(x, t) = 0 (b) 3 (x, t) e (0, 1) x (0, o) s.t. ди (x,()%3D0 (c) The function e'u(x, t) is bounded for (x, t) e (0, 1) × (0, 0) (d) 3 (x, t) e (0, 1) x(0, 0) s.t. u(x, t) > 1
Expert Solution
steps

Step by step

Solved in 6 steps with 6 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,