ºu 20ºu 0x2 02 subject to the initial conditions u(x,0) = n(x), = F(x, t) du(x,0) dt v(x)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

B1.

Advance maths

Using Riemann-Volterra Approach in partial differential Equation, solve the following 

 

 
2² u
20² u
at²
2x²
subject to the initial conditions u(x,0) = n(x),
Answer:
= F(x, t)
du(x,0)
dt
!= v(x)
-x+ct
1
u(x, t) = [n(x + ct) + n(x − ct)] + :
=
+ 2 c for v(E) d² - 2 / S² Sove
2c
2c
x-ct
Jx-ct
F(E, T) de dr
Transcribed Image Text:2² u 20² u at² 2x² subject to the initial conditions u(x,0) = n(x), Answer: = F(x, t) du(x,0) dt != v(x) -x+ct 1 u(x, t) = [n(x + ct) + n(x − ct)] + : = + 2 c for v(E) d² - 2 / S² Sove 2c 2c x-ct Jx-ct F(E, T) de dr
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,