Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![### Integration Exercise: Finding Indefinite Integrals
#### Problem 14: Indefinite Integral Calculation
**Original Integral:**
\[ \int \frac{1}{(3x)^2} \, dx \]
**Steps to Solve:**
1. **Rewrite:**
Rewrite the integrand to a more convenient form for integration:
\[ \int \frac{1}{9x^2} \, dx \]
Since \((3x)^2 = 9x^2\).
2. **Integrate:**
Use the basic integral formula for \(\int x^{-n} dx = \frac{x^{-n+1}}{-n+1} + C\) for \(n \neq 1\):
\[ \int \frac{1}{9x^2} \, dx = \int \frac{1}{9} x^{-2} \, dx = \frac{1}{9} \int x^{-2} \, dx \]
\[ = \frac{1}{9} \left( \frac{x^{-2+1}}{-2+1} \right) + C = \frac{1}{9} \left( \frac{x^{-1}}{-1} \right) + C \]
3. **Simplify:**
Simplify the resulting expression:
\[ = \frac{1}{9} \left( -\frac{1}{x} \right) + C \]
\[ = -\frac{1}{9x} + C \]
**Answer:**
\[ \int \frac{1}{(3x)^2} \, dx = -\frac{1}{9x} + C \]
This exercise demonstrates the step-by-step process of manipulating and integrating a given function. Understanding these steps is crucial for effectively solving indefinite integrals.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F83b540d6-8dbe-47db-b28f-7c0bcbc5fc80%2Fc45f7da6-7e95-426c-b92f-2075a47354fe%2F1ikdadj.jpeg&w=3840&q=75)
Transcribed Image Text:### Integration Exercise: Finding Indefinite Integrals
#### Problem 14: Indefinite Integral Calculation
**Original Integral:**
\[ \int \frac{1}{(3x)^2} \, dx \]
**Steps to Solve:**
1. **Rewrite:**
Rewrite the integrand to a more convenient form for integration:
\[ \int \frac{1}{9x^2} \, dx \]
Since \((3x)^2 = 9x^2\).
2. **Integrate:**
Use the basic integral formula for \(\int x^{-n} dx = \frac{x^{-n+1}}{-n+1} + C\) for \(n \neq 1\):
\[ \int \frac{1}{9x^2} \, dx = \int \frac{1}{9} x^{-2} \, dx = \frac{1}{9} \int x^{-2} \, dx \]
\[ = \frac{1}{9} \left( \frac{x^{-2+1}}{-2+1} \right) + C = \frac{1}{9} \left( \frac{x^{-1}}{-1} \right) + C \]
3. **Simplify:**
Simplify the resulting expression:
\[ = \frac{1}{9} \left( -\frac{1}{x} \right) + C \]
\[ = -\frac{1}{9x} + C \]
**Answer:**
\[ \int \frac{1}{(3x)^2} \, dx = -\frac{1}{9x} + C \]
This exercise demonstrates the step-by-step process of manipulating and integrating a given function. Understanding these steps is crucial for effectively solving indefinite integrals.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning