Open the Excel file GSB 519 Additional Years of Life for Males. The random variable x =.5, 1.5, 2.5,…..,110.5, where x denotes additional years of life beyond age zero. The second column shows the probability that each specific value of x occurs. This column contains the probability mass values, f(x). For example, the probability that a new-born male baby will live 20.5 years (not less or not more) is .00133349, i.e., f(20.5) = .00133349. Find the following properties of the random variable x. a. mean b. median c. mode d. variance e. standard deviation f. skewness g. kurtosis h. coefficient of variation i. Find the value of the distribution function F(x) when x = 65.5. j. How much total probability is contained within two standard deviations of the mean? [You should use Excel in order to avoid hand calculations. However, do not use Excel commands like AVERAGE or STDEV; you will get incorrect answers if you do.] Addition Years of Life Probability of Additional Years Beyond Age Zero of Life Beyond Age Zero x f(x) 0.5 0.00751 1.5 0.00056 2.5 0.00038 3.5 0.00029 4.5 0.00024 5.5 0.00019 6.5 0.00017 7.5 0.00015 8.5 0.00016 9.5 0.00016 10.5 0.00018 11.5 0.00018 12.5 0.0002 13.5 0.00025 14.5 0.00032 15.5 0.000460073 16.5 0.000685573 17.5 0.000917926 18.5 0.001199153 19.5 0.00135626 20.5 0.00133349 21.5 0.001472586 22.5 0.001402542 23.5 0.001352221 24.5 0.001358685 25.5 0.001282876 26.5 0.001347743 27.5 0.001297042 28.5 0.001358564 29.5 0.001318775 30.5 0.001378847 31.5 0.001359142 32.5 0.001408642 33.5 0.001545099 34.5 0.001634408 35.5 0.001793465 36.5 0.001830896 37.5 0.002058594 38.5 0.002218989 39.5 0.002318003 40.5 0.002497214 41.5 0.002625624 42.5 0.002829616 43.5 0.003127286 44.5 0.003371848 45.5 0.00363289 46.5 0.003865731 47.5 0.004286488 48.5 0.004594853 49.5 0.004860601 50.5 0.005204666 51.5 0.005403102 52.5 0.005796129 53.5 0.005999806 54.5 0.006883906 55.5 0.006782889 56.5 0.007789865 57.5 0.008396484 58.5 0.009423117 59.5 0.009462798 60.5 0.010712697 61.5 0.011239357 62.5 0.012274465 63.5 0.013113627 64.5 0.014132136 65.5 0.015179913 66.5 0.015977036 67.5 0.017252954 68.5 0.018356019 69.5 0.01954698 70.5 0.020510339 71.5 0.021720101 72.5 0.023166495 73.5 0.024551701 74.5 0.025450939 75.5 0.026803467 76.5 0.02780352 77.5 0.028734712 78.5 0.029889624 79.5 0.030836513 80.5 0.030723819 81.5 0.032875337 82.5 0.031112913 83.5 0.032654009 84.5 0.032164248 85.5 0.031555646 86.5 0.030541532 87.5 0.029139249 88.5 0.027383883 89.5 0.025327342 90.5 0.023035959 91.5 0.020586718 92.5 0.018062365 93.5 0.015545866 94.5 0.013114783 95.5 0.010836205 96.5 0.008762786 97.5 0.006930345 98.5 0.00535721 99.5 0.004045269 100.5 0.003527413 101.5 0.002 102.5 0.002 103.5 0.001 104.5 0.0005 105.5 0.0002 106.5 0.00015 107.5 0.00008 108.5 0.00004 109.5 0.00002 110.5 0.00001
Open the Excel file GSB 519 Additional Years of Life for Males. The random variable x =.5, 1.5, 2.5,…..,110.5, where x denotes additional years of life beyond age zero. The second column shows the probability that each specific value of x occurs. This column contains the probability mass values, f(x). For example, the probability that a new-born male baby will live 20.5 years (not less or not more) is .00133349, i.e., f(20.5) = .00133349. Find the following properties of the random variable x.
a. mean
b.
c.
d. variance
e. standard deviation
f. skewness
g. kurtosis
h. coefficient of variation
i. Find the value of the distribution
j. How much total probability is contained within two standard deviations of the mean?
[You should use Excel in order to avoid hand calculations. However, do not use Excel commands like AVERAGE or STDEV; you will get incorrect answers if you do.]
Addition Years of Life | Probability of Additional Years |
Beyond Age Zero | of Life Beyond Age Zero |
x | f(x) |
0.5 | 0.00751 |
1.5 | 0.00056 |
2.5 | 0.00038 |
3.5 | 0.00029 |
4.5 | 0.00024 |
5.5 | 0.00019 |
6.5 | 0.00017 |
7.5 | 0.00015 |
8.5 | 0.00016 |
9.5 | 0.00016 |
10.5 | 0.00018 |
11.5 | 0.00018 |
12.5 | 0.0002 |
13.5 | 0.00025 |
14.5 | 0.00032 |
15.5 | 0.000460073 |
16.5 | 0.000685573 |
17.5 | 0.000917926 |
18.5 | 0.001199153 |
19.5 | 0.00135626 |
20.5 | 0.00133349 |
21.5 | 0.001472586 |
22.5 | 0.001402542 |
23.5 | 0.001352221 |
24.5 | 0.001358685 |
25.5 | 0.001282876 |
26.5 | 0.001347743 |
27.5 | 0.001297042 |
28.5 | 0.001358564 |
29.5 | 0.001318775 |
30.5 | 0.001378847 |
31.5 | 0.001359142 |
32.5 | 0.001408642 |
33.5 | 0.001545099 |
34.5 | 0.001634408 |
35.5 | 0.001793465 |
36.5 | 0.001830896 |
37.5 | 0.002058594 |
38.5 | 0.002218989 |
39.5 | 0.002318003 |
40.5 | 0.002497214 |
41.5 | 0.002625624 |
42.5 | 0.002829616 |
43.5 | 0.003127286 |
44.5 | 0.003371848 |
45.5 | 0.00363289 |
46.5 | 0.003865731 |
47.5 | 0.004286488 |
48.5 | 0.004594853 |
49.5 | 0.004860601 |
50.5 | 0.005204666 |
51.5 | 0.005403102 |
52.5 | 0.005796129 |
53.5 | 0.005999806 |
54.5 | 0.006883906 |
55.5 | 0.006782889 |
56.5 | 0.007789865 |
57.5 | 0.008396484 |
58.5 | 0.009423117 |
59.5 | 0.009462798 |
60.5 | 0.010712697 |
61.5 | 0.011239357 |
62.5 | 0.012274465 |
63.5 | 0.013113627 |
64.5 | 0.014132136 |
65.5 | 0.015179913 |
66.5 | 0.015977036 |
67.5 | 0.017252954 |
68.5 | 0.018356019 |
69.5 | 0.01954698 |
70.5 | 0.020510339 |
71.5 | 0.021720101 |
72.5 | 0.023166495 |
73.5 | 0.024551701 |
74.5 | 0.025450939 |
75.5 | 0.026803467 |
76.5 | 0.02780352 |
77.5 | 0.028734712 |
78.5 | 0.029889624 |
79.5 | 0.030836513 |
80.5 | 0.030723819 |
81.5 | 0.032875337 |
82.5 | 0.031112913 |
83.5 | 0.032654009 |
84.5 | 0.032164248 |
85.5 | 0.031555646 |
86.5 | 0.030541532 |
87.5 | 0.029139249 |
88.5 | 0.027383883 |
89.5 | 0.025327342 |
90.5 | 0.023035959 |
91.5 | 0.020586718 |
92.5 | 0.018062365 |
93.5 | 0.015545866 |
94.5 | 0.013114783 |
95.5 | 0.010836205 |
96.5 | 0.008762786 |
97.5 | 0.006930345 |
98.5 | 0.00535721 |
99.5 | 0.004045269 |
100.5 | 0.003527413 |
101.5 | 0.002 |
102.5 | 0.002 |
103.5 | 0.001 |
104.5 | 0.0005 |
105.5 | 0.0002 |
106.5 | 0.00015 |
107.5 | 0.00008 |
108.5 | 0.00004 |
109.5 | 0.00002 |
110.5 | 0.00001 |
Note: Hi! Thank you for the question, As per the honor code, we are allowed to answer three sub-parts at a time so we are answering the first three as you have not mentioned which of these you are looking for. Please re-submit the question separately for the remaining sub-parts.
The mean formula is as follows.
is the sample size.
The median is as follows.
is the largest value of such that
is the smallest value of such that
The mode is the value of for which the probability mass function is maximized.
The given data is as follows.
The random variable is additional years of life beyond age zero
0.5 | 0.00751 |
1.5 | 0.00056 |
2.5 | 0.00038 |
3.5 | 0.00029 |
4.5 | 0.00024 |
5.5 | 0.00019 |
6.5 | 0.00017 |
7.5 | 0.00015 |
8.5 | 0.00016 |
9.5 | 0.00016 |
10.5 | 0.00018 |
11.5 | 0.00018 |
12.5 | 0.00020 |
13.5 | 0.00025 |
14.5 | 0.00032 |
15.5 | 0.00046 |
16.5 | 0.00069 |
17.5 | 0.00092 |
18.5 | 0.00120 |
19.5 | 0.00136 |
20.5 | 0.00133 |
21.5 | 0.00147 |
22.5 | 0.00140 |
23.5 | 0.00135 |
24.5 | 0.00136 |
25.5 | 0.00128 |
26.5 | 0.00135 |
27.5 | 0.00130 |
28.5 | 0.00136 |
29.5 | 0.00132 |
30.5 | 0.00138 |
31.5 | 0.00136 |
32.5 | 0.00141 |
33.5 | 0.00155 |
34.5 | 0.00163 |
35.5 | 0.00179 |
36.5 | 0.00183 |
37.5 | 0.00206 |
38.5 | 0.00222 |
39.5 | 0.00232 |
40.5 | 0.00250 |
41.5 | 0.00263 |
42.5 | 0.00283 |
43.5 | 0.00313 |
44.5 | 0.00337 |
45.5 | 0.00363 |
46.5 | 0.00387 |
47.5 | 0.00429 |
48.5 | 0.00459 |
49.5 | 0.00486 |
50.5 | 0.00520 |
51.5 | 0.00540 |
52.5 | 0.00580 |
53.5 | 0.00600 |
54.5 | 0.00688 |
55.5 | 0.00678 |
56.5 | 0.00779 |
57.5 | 0.00840 |
58.5 | 0.00942 |
59.5 | 0.00946 |
60.5 | 0.01071 |
61.5 | 0.01124 |
62.5 | 0.01227 |
63.5 | 0.01311 |
64.5 | 0.01413 |
65.5 | 0.01518 |
66.5 | 0.01598 |
67.5 | 0.01725 |
68.5 | 0.01836 |
69.5 | 0.01955 |
70.5 | 0.02051 |
71.5 | 0.02172 |
72.5 | 0.02317 |
73.5 | 0.02455 |
74.5 | 0.02545 |
75.5 | 0.02680 |
76.5 | 0.02780 |
77.5 | 0.02873 |
78.5 | 0.02989 |
79.5 | 0.03084 |
80.5 | 0.03072 |
81.5 | 0.03288 |
82.5 | 0.03111 |
83.5 | 0.03265 |
84.5 | 0.03216 |
85.5 | 0.03156 |
86.5 | 0.03054 |
87.5 | 0.02914 |
88.5 | 0.02738 |
89.5 | 0.02533 |
90.5 | 0.02304 |
91.5 | 0.02059 |
92.5 | 0.01806 |
93.5 | 0.01555 |
94.5 | 0.01311 |
95.5 | 0.01084 |
96.5 | 0.00876 |
97.5 | 0.00693 |
98.5 | 0.00536 |
99.5 | 0.00405 |
100.5 | 0.00353 |
101.5 | 0.00200 |
102.5 | 0.00200 |
103.5 | 0.00100 |
104.5 | 0.00050 |
105.5 | 0.00020 |
106.5 | 0.00015 |
107.5 | 0.00008 |
108.5 | 0.00004 |
109.5 | 0.00002 |
110.5 | 0.00001 |
Trending now
This is a popular solution!
Step by step
Solved in 4 steps