On this interval the sine function is one-to-one, and its inverse function  sin−1  is defined by  sin−1(x) = y ⇔ sin              =         .  For example,  sin−1   1 2   =         because  sin              =         . (b) To define the inverse cosine function, we restrict the domain of cosine to the interval         . On this interval the cosine function is one-to-one and its inverse function  cos−1  is defined by  cos−1(x) = y ⇔ cos              =         .  For example,  cos−1   1 2   =         because  cos

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
Question
100%

 On this interval the sine function is one-to-one, and its inverse function 

sin−1

 is defined by 

sin−1(x) = y ⇔ sin
 
 
 
 
 
 
 
 = 
 
 
 
 .

 For example, 

sin−1
 
1
2
 
 = 
 
 
 

 because 

sin
 
 
 
 
 
 
 
 = 
 
 
 
 .



(b) To define the inverse cosine function, we restrict the domain of cosine to the interval 

 
 
 

 . On this interval the cosine function is one-to-one and its inverse function 

cos−1

 is defined by 

cos−1(x) = y ⇔ cos
 
 
 
 
 
 
 
 = 
 
 
 
 .

 For example, 

cos−1
 
1
2
 
 = 
 
 
 

 because 

cos
 
 
 
 
 
 
 
 = 
 
 
 
 .
Expert Solution
Step 1

Trigonometry homework question answer, step 1, image 1

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning