On January 1, a company agrees to pay $28,000 in nine years. If the annual interest rate is 3%, determine how much cash the company can borrow with this agreement. (PV of $1, FV of $1, PVA of $1, and FVA of $1) (Use appropriate factor(s) from the tables provided. Round "Table Factor" to 4 decimal places.)

FINANCIAL ACCOUNTING
10th Edition
ISBN:9781259964947
Author:Libby
Publisher:Libby
Chapter1: Financial Statements And Business Decisions
Section: Chapter Questions
Problem 1Q
icon
Related questions
Question
100%

On January 1, a company agrees to pay $28,000 in nine years. If the annual interest rate is 3%, determine how much cash the company can borrow with this agreement. (PV of $1, FV of $1, PVA of $1, and FVA of $1) (Use appropriate factor(s) from the tables provided. Round "Table Factor" to 4 decimal places.)

Amount
Borrowed
Future Value
Table Factor
Transcribed Image Text:Amount Borrowed Future Value Table Factor
TABLE B.1
p = 1/(1 + iy"
%3D
Present Value of 1
Rate
Perlods
1%
2%
3%
4%
5%
6%
7%
8%
9%
10%
12%
15%
0.9174
0.8417
1
0.9901
0.9804
0.9709
0.9615
0.9524
0.9434
0.9346
0.9259
0.9091
0.8929
0.8696
0.9803
0.9612
0.9426
0.9246
0.9070
0.8900
0.8734
0.8573
0.8264
0.7972
0.7561
0.9423
0.9238
0.9057
0.9151
0.8885
0.8626
0.7513
0.6830
0.6209
0.9706
0.8638
0.7938
0.7722
0.7084
0.6499
3
0.8890
0.8396
0.8163
0.7118
0.6575
4
0.9610
0.8548
0.8219
0.8227
0.7921
0.7473
0.7050
0.7629
0.7130
0.7350
0.9515
0.9420
0.6355
0.5674
0.5066
0.5718
0.4972
0.7835
0.6806
0.8880
0.8375
0.7903
0.7462
0.6663
0.6302
0.5963
0.5645
0.4323
0.5470
0.5019
0.4604
7
0.9327
0.8706
0.8131
0.7599
0.7107
0.6651
0.6227
0.5835
0.5403
0.5002
0.5132
0.4523
0.3759
8.
0.9235
0.8535
0.8368
0.7894
0.7307
0.6768
0.6446
0.6274
0.5820
0.4665
0.4039
0.3269
0.9143
0.7664
0.7026
0.5919
0.5439
0.4241
0.3606
0.2843
0.9053
0.8963
0.8874
0.8787
0.6756
0.6496
0.6139
0.5847
10
0.8203
0.7441
0.3855
0.3220
0.5584
0.5268
0.5083
0.4632
0.4224
0.2472
0.8043
0.7885
0.7224
0.4751
0.3875
0.3505
0.2875
0.2567
0.2292
11
0.4289
0.2149
0.7014
0.4970
0.4688
12
0.6246
0.3186
0.1869
0.5568
0.5303
0.4440
0.4150
0.3971
0.3677
0.3555
0.3262
13
0.7730
0.6810
0.6006
0.2897
0.1625
0.8700
0.8613
0.8528
0.7579
0.7430
0.7284
0.6611
0.6419
0.4423
0.4173
0.3405
0.3152
0.2992
0.2745
0.2633
0.2394
0.1413
0.1229
14
0.5775
0.5051
0.4810
0.3878
0.3624
0.2046
0.1827
15
0.5553
0.4581
0.4363
16
0.6232
0.5339
0.3936
0.3387
0.2919
0.2519
0.2176
0.1631
0.1069
0.6050
0.5874
0.5703
17
0.8444
0.7142
0.5134
0.3714
0.3166
0.2703
0.2311
0.1978
0.1456
0.0929
0.8360
0.8277
0.7002
0.6864
0.4936
0.4746
18
0.4155
0.3503
0.3305
0.2959
0.2502
0.2317
0.2120
0.1799
0.1300
0.1161
0.0808
0.3957
19
20
0.2765
0.1945
0.1635
0.0703
0.5537
0.4776
0.4120
0.1784
0.1160
0.0754
0.0490
0.0318
0.8195
0.6730
0.4564
0.3769
0.3118
0.2584
0.2145
0.1486
0.1037
0.0611
0.7798
0.2953
0.2314
25
0.6095
0.3751
0.2330
0.1842
0.1460
0.0923
0.0588
0.0304
0.0994
0.0676
30
0.7419
0.5521
0.3083
0.0151
0.1741
0.1301
0.0972
0.1314
0.0573
0.5000
0.4529
0.0334
0.0189
0.0107
0.0937
35
40
0.0075
0.0037
0.7059
0.3554
0.2534
0.1813
0.0356
0.0221
0.6717
0.3066
0.2083
0.1420
0.0668
0.0460
*Used to compute the present valuc of a known future amount. For example: How much would you nced to invest today at 10% compounded semiannually to accumulate $5,000 in 6 years
from today? Using the factors of n= 12 and i = 5% (12 semiannual periods and a semiannual rate of 5%), the factor is 0.5568. You would need to invest $2,784 today ($5,000x0.5568).
TABLE B.2*
f = (1+ iy"
Future Value of 1
Rate
Periods
1%
2%
3%
4%
5%
6%
7%
8%
9%
10%
12%
15%
1.0000
1.0000
1.0400
1.0000
1.0000
1.0000
1.0300
1.0609
1.0000
1.0500
1.1025
1.0000
1.0600
1.1236
1.0000
1.0000
1.0000
1.0000
1.0000
1.0700
1.1449
1.0800
1.1664
1.2597
1.3605
1.0900
1.1881
1.1200
1.2544
1.4049
1.1500
1.3225
1.5209
1.0100
1.0200
1.1000
1.2100
1.3310
1.4641
1.0201
1.0404
1.0816
3
1.0303
1.0612
1.0927
1.1249
1.1576
1.1910
1.2250
1.2950
1.0406
1.0510
1.0615
1.0721
1.0829
1.0824
1.1041
1.1262
1.1699
1.2167
1.2653
1.4116
1.5386
1.6771
1.5735
1.7623
1.9738
1.7490
1.1255
1.1593
1.1941
1.2155
1.2763
1.3401
1.2625
1.3382
1.4185
1.3108
1.4026
1.5007
1.4693
1.6105
1.7716
2.0114
2.3131
6
1.5869
1.3159
1.3686
1.4233
1.4802
1.4071
1.4775
1.5513
2.2107
2.4760
2.7731
3.1058
3.4785
7
1.1487
1.2299
1.9487
1.5036
1.5938
1.6895
1.6058
1.7138
1.8509
1.9990
2.1589
1.8280
1.9926
2.1719
2.3674
2.6600
8
1.1717
1.0937
1.1046
1.2668
1.3048
1.3439
1.7182
1.8385
2.1436
2.3579
2.5937
3.0590
3.5179
4.0456
9
1.1951
1.2190
1.6289
1.7103
1.9672
2.1049
10
1.7908
11
1.1157
1.2434
1.2682
1.3842
1.4258
1.5395
1.8983
2.3316
2.5804
2.8531
4.6524
2.8127
5.3503
6.1528
12
1.1268
1.6010
1.7959
2.0122
2.2522
2.5182
3.1384
3.8960
13
1.1381
1.2936
1.4685
1.6651
1.8856
2.1329
2.4098
2.7196
3.0658
3.4523
4.3635
1.5126
1.5580
1.6047
1.9799
2.0789
2.1829
2.5785
2.7590
2.9522
3.1588
14
1.1495
1.1610
1.3195
1.3459
1.3728
1.7317
1.8009
2.2609
2.9372
3.1722
3.3417
3.7975
4.1772
4.5950
5.0545
4.8871
15
16
2.3966
2.5404
3.6425
3.9703
4.3276
5.4736
6.1304
6.8660
7.0757
8.1371
9.3576
1.1726
1.8730
3.4259
17
1.1843
1.4002
1.6528
1.9479
2.2920
2.6928
3.7000
10.7613
12.3755
14.2318
1.1961
1.4282
18
19
20
25
1.7024
1.7535
1.8061
3.3799
3.6165
3.8697
5.4274
4.7171
5.1417
5.6044
2.0258
2.1068
2.4066
2.5270
2.6533
3.3864
2.8543
3.0256
3.2071
3.9960
4.3157
4.6610
5.5599
6.1159
7.6900
8.6128
9.6463
1.2081
1.4568
1.4859
1.2202
2.1911
6.7275
16.3665
1.2824
1.6406
2.0938
2.6658
4.2919
6.8485
8.6231
10.8347
17.0001
32.9190
1.8114
1.9999
2.2080
30
17.4494
35
40
1.3478
1.4166
1.4889
2.4273
2.8139
3.2620
3.2434
3.9461
4.8010
4.3219
5.5160
5.7435
7.6861
10.2857
7.6123
10.6766
14.9745
10.0627
14.7853
21.7245
13.2677
20.4140
31.4094
28.1024
45.2593
29.9599
52.7996
93.0510
66.2118
133.1755
267.8635
7.0400
"Used to compute the future value of a known present amount. For example: What is the accumulatcd value of $3,000 invested today at 8% compounded quarterly for 5 years? Using
the factors ofn=20 and i = 2% (20 quarterly periods and a quarterly interest rate of 2%), the factor is 1.4859. Thc accumulated value is $4,457.70 ($3.000 x 1.4859).
1
TABLE B.3:
/i
(1 + i)"
p = |1-
Present Value of an Annuity of 1
Rate
Periods
1%
2%
3%
4%
5%
6%
7%
8%
9%
10%
12%
15%
0.9524
1.8594
0.9901
0.9804
0.9709
0.9615
0.9434
0.9346
0.9259
0.9174
0.9091
0.8929
0.8696
1.6257
1
1.9704
2.9410
3.9020
4.8534
5.7955
1.9135
2.8286
2
1.9416
1.8861
1.8334
1.8080
1.7833
1.7591
1.7355
1.6901
2.8839
2.7751
2.7232
2.6730
2.6243
2.5771
2.5313
2.4869
2.4018
2.2832
3.3121
3.9927
3.1699
3.7908
3.8077
3.5460
3.4651
4.2124
2.8550
3.3522
3.7845
3.7171
3.6299
3.3872
3.2397
3.0373
5
4.7135
4.5797
4.4518
4.3295
4.1002
3.8897
3.6048
6
5.6014
5.4172
5.2421
5.0757
4.9173
4.7665
4.6229
4.4859
4.3553
4.1114
7
6.7282
6.4720
6.2303
6.0021
5.7864
5.5824
5.3893
5.2064
5.0330
4.8684
4.5638
4.1604
6.4632
7.1078
5.3349
5.7590
8
7.6517
7.3255
7.0197
6.7327
6.2098
5.9713
5.7466
5.5348
4.9676
4.4873
8.5660
9.4713
5.3282
5.6502
5.9377
6.1944
6.4235
6.6282
8.1622
8.9826
9
7.7861
7.4353
6.8017
6.5152
7.0236
6.2469
5.9952
4.7716
10
8.5302
8.1109
7.7217
7.3601
6.7101
6.4177
6.1446
5.0188
10.3676
11.2551
11
9.7868
9.2526
8.7605
8.3064
7.8869
7.4987
7.1390
6.8052
6.4951
5.2337
9.3851
9.9856
10.5631
12
10.5753
9.9540
8.8633
8.3838
7.9427
7.5361
7.1607
6.8137
5.4206
11.3484
12.1062
10.6350
11.2961
7.1034
7.3667
13
12.1337
13.0037
9.3936
8.8527
8.3577
7.9038
7.4869
5.5831
14
9.8986
9.2950
8.7455
8.2442
7.7862
5.7245
15
13.8651
14.7179
12.8493
11.9379
11.1184
10.3797
9.7122
9.1079
8.5595
8.0607
7.6061
6.8109
5.8474
5.9542
6.0472
6.1280
16
13.5777
12.5611
11.6523
10.8378
10.1059
9.4466
8.8514
8.3126
7.8237
6.9740
14.2919
14.9920
10.4773
10.8276
9.1216
9.3719
8.5436
8.7556
17
15.5623
13.1661
12.1657
11.2741
9.7632
8.0216
7.1196
18
16.3983
13.7535
12.6593
11.6896
10.0591
8.2014
7.2497
19
17.2260
15.6785
14.3238
13.1339
12.0853
11.1581
10.3356
9.6036
8.9501
8.3649
7.3658
6.1982
12.4622
14.0939
10.5940
11.6536
8.5136
9.0770
20
18.0456
16.3514
14.8775
13.5903
11.4699
9.8181
9.1285
7.4694
6.2593
25
22.0232
19.5235
17.4131
15.6221
12.7834
10.6748
9.8226
7.8431
6.4641
30
25.8077
22.3965
19.6004
17.2920
15.3725
13.7648
12.4090
11.2578
10.2737
9.4269
8.0552
6.5660
35
29.4086
24.9986
21.4872
18.6646
16.3742
14.4982
12.9477
11.6546
10.5668
9.6442
8.1755
6.6166
40
32.8347
27.3555
23.1148
19.7928
17.1591
15.0463
13.3317
11.9246
10.7574
9.7791
8.2438
6.6418
*Used to calculate the present value of a series of equal payments made at the end of each period. For example: What is the present value of $2,000 per year for 10 years assuming an
annual interest rate of 9%? For (n = 10, i= 9%), the PV factor is 6.4177. $2,000 per year for 10 years is the equivalent of $12,835 today ($2,000 x 6.4177).
TABLE B.4$
f= [(1 +iy – 1]/i
Future Value of an Annuity of 1
Rate
Perlods
1%
2%
3%
4%
5%
6%
7%
8%
9%
10%
12%
15%
1.0000
2.0500
1.0000
2.0800
1.0000
1.0000
2.0100
1.0000
2.0200
1.0000
2.0400
1.0000
2.1200
1.0000
1.0000
2.0700
1.0000
2.0900
1
1.0000
1.0000
2.0300
2.0600
2.1000
2.1500
3
3.0301
3.0604
3.0909
3.1216
3.1525
3.1836
3.2149
3.2464
3.2781
3.3100
3.3744
3.4725
4
4.0604
4.9934
4.1216
5.2040
4.1836
4.2465
4.3101
4.3746
4.4399
4.5061
4.5731
4.6410
4.7793
5.1010
5.3091
5.4163
5.5256
5.6371
5.7507
5.8666
5.9847
6.1051
6.3528
6.7424
6.1520
7.2135
8.2857
9.3685
6.8019
7.5233
6.3081
6.4684
7.4343
7.6625
8.8923
8.5830
9.7546 10.1591
6.6330
7.8983
9.2142
10.5828
7.1533
8.6540
10.2598
7.3359
8.9228
10.6366
12.4876
14.4866
7.7156
9.4872
11.4359
13.5795
15.9374
8.1152
10.0890
12.2997
14.7757
8.7537
11.0668
13.7268
16.7858
6.9753
9.2004
11.0285
7
8
9.
8.1420
9.5491
11.0266
8.3938
9.8975
11.4913
11.9780
13.0210
12.5779
14.2068
10.4622 10.9497 11.4639
12.1687
13.4121
17.5487
20.6546
24.1331
28.0291
10
12.0061
13.1808
13.8164
15.1929
20.3037
11
11.5668
12.8078
13.4864
14.9716
15.7836
16.6455
18.9771
17.5603
18.5312
24.3493
14.1920
15.6178
15.0258
16.6268
12
12.6825
15.9171
16.8699
17.8885
20.1407
21.3843
29.0017
18.8821
20.1406
22.9534
24.5227
27.9750
13
13.8093
14.6803
17.7130
21.4953
34.3519
14
14.9474
15.9739 17.0863
18.2919
19.5986
21.0151
22.5505
24.2149
26.0192
32.3926
40.5047
15
16.0969
17.2934 18.5989
20.0236
21.5786
23.2760
25.1290
27.1521
29.3609
31.7725
37.2797
47.5804
18.6393 20.1569
30.3243
33.7502
37.4502
41.4463
16
17.2579
21.8245
23.6575
25.6725
27.8881
33.0034
35.9497
42.7533
55.7175
17
20.0121
18.4304
19.6147
20.8109 22.8406 25.1169
22.0190
21.7616
23.4144
23.6975
25.6454
27.6712
25.8404
28.2129
30.9057
33.7600
36.7856
54.8645
79.0582
30.8402
33.9990
37.3790
40.9955
36.9737
40.5447
45.5992
51.1591
48.8837
18
19
20
65.0751
75.8364
88.2118
102.4436
21.4123
28.1324
30.5390
33.0660
55.7497
63.4397
72.0524
41.3013
46.0185
24.2974 26.8704
29.7781
45.7620
51.1601
57.2750
25
28.2432
32.0303
36.4593
41.6459
47.7271
63.2490
73.1059
84.7009
98.3471
133.3339
212.7930
34.7849
41.6603
113.2832
172.3168
47.5754
56.0849
73.6522
30
40.5681
66.4388
94.4608
136.3075
164.4940 241.3327
434.7451
35
49.9945
60.4621
90.3203 111.4348
138.2369
215.7108 271.0244 431.6635
881.1702
40
48.8864
60.4020 75.4013
95.0255 120.7998
154.7620
199.6351
259.0565
337.8824 442.5926 767.0914
1,779.0903
Used to calculate the future value of a series of equal pay ments made at the end of each period. For example: What is the future valuc of $4,000 per year for 6 years assuming an
annual interest rate of 8%? For (n= 6, i = 8%), the FV factor is 7.3359. $4,000 per year for 6 years accumulates to $29,343.60 ($4,000 x 7.3359).
|密出
Transcribed Image Text:TABLE B.1 p = 1/(1 + iy" %3D Present Value of 1 Rate Perlods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% 0.9174 0.8417 1 0.9901 0.9804 0.9709 0.9615 0.9524 0.9434 0.9346 0.9259 0.9091 0.8929 0.8696 0.9803 0.9612 0.9426 0.9246 0.9070 0.8900 0.8734 0.8573 0.8264 0.7972 0.7561 0.9423 0.9238 0.9057 0.9151 0.8885 0.8626 0.7513 0.6830 0.6209 0.9706 0.8638 0.7938 0.7722 0.7084 0.6499 3 0.8890 0.8396 0.8163 0.7118 0.6575 4 0.9610 0.8548 0.8219 0.8227 0.7921 0.7473 0.7050 0.7629 0.7130 0.7350 0.9515 0.9420 0.6355 0.5674 0.5066 0.5718 0.4972 0.7835 0.6806 0.8880 0.8375 0.7903 0.7462 0.6663 0.6302 0.5963 0.5645 0.4323 0.5470 0.5019 0.4604 7 0.9327 0.8706 0.8131 0.7599 0.7107 0.6651 0.6227 0.5835 0.5403 0.5002 0.5132 0.4523 0.3759 8. 0.9235 0.8535 0.8368 0.7894 0.7307 0.6768 0.6446 0.6274 0.5820 0.4665 0.4039 0.3269 0.9143 0.7664 0.7026 0.5919 0.5439 0.4241 0.3606 0.2843 0.9053 0.8963 0.8874 0.8787 0.6756 0.6496 0.6139 0.5847 10 0.8203 0.7441 0.3855 0.3220 0.5584 0.5268 0.5083 0.4632 0.4224 0.2472 0.8043 0.7885 0.7224 0.4751 0.3875 0.3505 0.2875 0.2567 0.2292 11 0.4289 0.2149 0.7014 0.4970 0.4688 12 0.6246 0.3186 0.1869 0.5568 0.5303 0.4440 0.4150 0.3971 0.3677 0.3555 0.3262 13 0.7730 0.6810 0.6006 0.2897 0.1625 0.8700 0.8613 0.8528 0.7579 0.7430 0.7284 0.6611 0.6419 0.4423 0.4173 0.3405 0.3152 0.2992 0.2745 0.2633 0.2394 0.1413 0.1229 14 0.5775 0.5051 0.4810 0.3878 0.3624 0.2046 0.1827 15 0.5553 0.4581 0.4363 16 0.6232 0.5339 0.3936 0.3387 0.2919 0.2519 0.2176 0.1631 0.1069 0.6050 0.5874 0.5703 17 0.8444 0.7142 0.5134 0.3714 0.3166 0.2703 0.2311 0.1978 0.1456 0.0929 0.8360 0.8277 0.7002 0.6864 0.4936 0.4746 18 0.4155 0.3503 0.3305 0.2959 0.2502 0.2317 0.2120 0.1799 0.1300 0.1161 0.0808 0.3957 19 20 0.2765 0.1945 0.1635 0.0703 0.5537 0.4776 0.4120 0.1784 0.1160 0.0754 0.0490 0.0318 0.8195 0.6730 0.4564 0.3769 0.3118 0.2584 0.2145 0.1486 0.1037 0.0611 0.7798 0.2953 0.2314 25 0.6095 0.3751 0.2330 0.1842 0.1460 0.0923 0.0588 0.0304 0.0994 0.0676 30 0.7419 0.5521 0.3083 0.0151 0.1741 0.1301 0.0972 0.1314 0.0573 0.5000 0.4529 0.0334 0.0189 0.0107 0.0937 35 40 0.0075 0.0037 0.7059 0.3554 0.2534 0.1813 0.0356 0.0221 0.6717 0.3066 0.2083 0.1420 0.0668 0.0460 *Used to compute the present valuc of a known future amount. For example: How much would you nced to invest today at 10% compounded semiannually to accumulate $5,000 in 6 years from today? Using the factors of n= 12 and i = 5% (12 semiannual periods and a semiannual rate of 5%), the factor is 0.5568. You would need to invest $2,784 today ($5,000x0.5568). TABLE B.2* f = (1+ iy" Future Value of 1 Rate Periods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% 1.0000 1.0000 1.0400 1.0000 1.0000 1.0000 1.0300 1.0609 1.0000 1.0500 1.1025 1.0000 1.0600 1.1236 1.0000 1.0000 1.0000 1.0000 1.0000 1.0700 1.1449 1.0800 1.1664 1.2597 1.3605 1.0900 1.1881 1.1200 1.2544 1.4049 1.1500 1.3225 1.5209 1.0100 1.0200 1.1000 1.2100 1.3310 1.4641 1.0201 1.0404 1.0816 3 1.0303 1.0612 1.0927 1.1249 1.1576 1.1910 1.2250 1.2950 1.0406 1.0510 1.0615 1.0721 1.0829 1.0824 1.1041 1.1262 1.1699 1.2167 1.2653 1.4116 1.5386 1.6771 1.5735 1.7623 1.9738 1.7490 1.1255 1.1593 1.1941 1.2155 1.2763 1.3401 1.2625 1.3382 1.4185 1.3108 1.4026 1.5007 1.4693 1.6105 1.7716 2.0114 2.3131 6 1.5869 1.3159 1.3686 1.4233 1.4802 1.4071 1.4775 1.5513 2.2107 2.4760 2.7731 3.1058 3.4785 7 1.1487 1.2299 1.9487 1.5036 1.5938 1.6895 1.6058 1.7138 1.8509 1.9990 2.1589 1.8280 1.9926 2.1719 2.3674 2.6600 8 1.1717 1.0937 1.1046 1.2668 1.3048 1.3439 1.7182 1.8385 2.1436 2.3579 2.5937 3.0590 3.5179 4.0456 9 1.1951 1.2190 1.6289 1.7103 1.9672 2.1049 10 1.7908 11 1.1157 1.2434 1.2682 1.3842 1.4258 1.5395 1.8983 2.3316 2.5804 2.8531 4.6524 2.8127 5.3503 6.1528 12 1.1268 1.6010 1.7959 2.0122 2.2522 2.5182 3.1384 3.8960 13 1.1381 1.2936 1.4685 1.6651 1.8856 2.1329 2.4098 2.7196 3.0658 3.4523 4.3635 1.5126 1.5580 1.6047 1.9799 2.0789 2.1829 2.5785 2.7590 2.9522 3.1588 14 1.1495 1.1610 1.3195 1.3459 1.3728 1.7317 1.8009 2.2609 2.9372 3.1722 3.3417 3.7975 4.1772 4.5950 5.0545 4.8871 15 16 2.3966 2.5404 3.6425 3.9703 4.3276 5.4736 6.1304 6.8660 7.0757 8.1371 9.3576 1.1726 1.8730 3.4259 17 1.1843 1.4002 1.6528 1.9479 2.2920 2.6928 3.7000 10.7613 12.3755 14.2318 1.1961 1.4282 18 19 20 25 1.7024 1.7535 1.8061 3.3799 3.6165 3.8697 5.4274 4.7171 5.1417 5.6044 2.0258 2.1068 2.4066 2.5270 2.6533 3.3864 2.8543 3.0256 3.2071 3.9960 4.3157 4.6610 5.5599 6.1159 7.6900 8.6128 9.6463 1.2081 1.4568 1.4859 1.2202 2.1911 6.7275 16.3665 1.2824 1.6406 2.0938 2.6658 4.2919 6.8485 8.6231 10.8347 17.0001 32.9190 1.8114 1.9999 2.2080 30 17.4494 35 40 1.3478 1.4166 1.4889 2.4273 2.8139 3.2620 3.2434 3.9461 4.8010 4.3219 5.5160 5.7435 7.6861 10.2857 7.6123 10.6766 14.9745 10.0627 14.7853 21.7245 13.2677 20.4140 31.4094 28.1024 45.2593 29.9599 52.7996 93.0510 66.2118 133.1755 267.8635 7.0400 "Used to compute the future value of a known present amount. For example: What is the accumulatcd value of $3,000 invested today at 8% compounded quarterly for 5 years? Using the factors ofn=20 and i = 2% (20 quarterly periods and a quarterly interest rate of 2%), the factor is 1.4859. Thc accumulated value is $4,457.70 ($3.000 x 1.4859). 1 TABLE B.3: /i (1 + i)" p = |1- Present Value of an Annuity of 1 Rate Periods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% 0.9524 1.8594 0.9901 0.9804 0.9709 0.9615 0.9434 0.9346 0.9259 0.9174 0.9091 0.8929 0.8696 1.6257 1 1.9704 2.9410 3.9020 4.8534 5.7955 1.9135 2.8286 2 1.9416 1.8861 1.8334 1.8080 1.7833 1.7591 1.7355 1.6901 2.8839 2.7751 2.7232 2.6730 2.6243 2.5771 2.5313 2.4869 2.4018 2.2832 3.3121 3.9927 3.1699 3.7908 3.8077 3.5460 3.4651 4.2124 2.8550 3.3522 3.7845 3.7171 3.6299 3.3872 3.2397 3.0373 5 4.7135 4.5797 4.4518 4.3295 4.1002 3.8897 3.6048 6 5.6014 5.4172 5.2421 5.0757 4.9173 4.7665 4.6229 4.4859 4.3553 4.1114 7 6.7282 6.4720 6.2303 6.0021 5.7864 5.5824 5.3893 5.2064 5.0330 4.8684 4.5638 4.1604 6.4632 7.1078 5.3349 5.7590 8 7.6517 7.3255 7.0197 6.7327 6.2098 5.9713 5.7466 5.5348 4.9676 4.4873 8.5660 9.4713 5.3282 5.6502 5.9377 6.1944 6.4235 6.6282 8.1622 8.9826 9 7.7861 7.4353 6.8017 6.5152 7.0236 6.2469 5.9952 4.7716 10 8.5302 8.1109 7.7217 7.3601 6.7101 6.4177 6.1446 5.0188 10.3676 11.2551 11 9.7868 9.2526 8.7605 8.3064 7.8869 7.4987 7.1390 6.8052 6.4951 5.2337 9.3851 9.9856 10.5631 12 10.5753 9.9540 8.8633 8.3838 7.9427 7.5361 7.1607 6.8137 5.4206 11.3484 12.1062 10.6350 11.2961 7.1034 7.3667 13 12.1337 13.0037 9.3936 8.8527 8.3577 7.9038 7.4869 5.5831 14 9.8986 9.2950 8.7455 8.2442 7.7862 5.7245 15 13.8651 14.7179 12.8493 11.9379 11.1184 10.3797 9.7122 9.1079 8.5595 8.0607 7.6061 6.8109 5.8474 5.9542 6.0472 6.1280 16 13.5777 12.5611 11.6523 10.8378 10.1059 9.4466 8.8514 8.3126 7.8237 6.9740 14.2919 14.9920 10.4773 10.8276 9.1216 9.3719 8.5436 8.7556 17 15.5623 13.1661 12.1657 11.2741 9.7632 8.0216 7.1196 18 16.3983 13.7535 12.6593 11.6896 10.0591 8.2014 7.2497 19 17.2260 15.6785 14.3238 13.1339 12.0853 11.1581 10.3356 9.6036 8.9501 8.3649 7.3658 6.1982 12.4622 14.0939 10.5940 11.6536 8.5136 9.0770 20 18.0456 16.3514 14.8775 13.5903 11.4699 9.8181 9.1285 7.4694 6.2593 25 22.0232 19.5235 17.4131 15.6221 12.7834 10.6748 9.8226 7.8431 6.4641 30 25.8077 22.3965 19.6004 17.2920 15.3725 13.7648 12.4090 11.2578 10.2737 9.4269 8.0552 6.5660 35 29.4086 24.9986 21.4872 18.6646 16.3742 14.4982 12.9477 11.6546 10.5668 9.6442 8.1755 6.6166 40 32.8347 27.3555 23.1148 19.7928 17.1591 15.0463 13.3317 11.9246 10.7574 9.7791 8.2438 6.6418 *Used to calculate the present value of a series of equal payments made at the end of each period. For example: What is the present value of $2,000 per year for 10 years assuming an annual interest rate of 9%? For (n = 10, i= 9%), the PV factor is 6.4177. $2,000 per year for 10 years is the equivalent of $12,835 today ($2,000 x 6.4177). TABLE B.4$ f= [(1 +iy – 1]/i Future Value of an Annuity of 1 Rate Perlods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% 1.0000 2.0500 1.0000 2.0800 1.0000 1.0000 2.0100 1.0000 2.0200 1.0000 2.0400 1.0000 2.1200 1.0000 1.0000 2.0700 1.0000 2.0900 1 1.0000 1.0000 2.0300 2.0600 2.1000 2.1500 3 3.0301 3.0604 3.0909 3.1216 3.1525 3.1836 3.2149 3.2464 3.2781 3.3100 3.3744 3.4725 4 4.0604 4.9934 4.1216 5.2040 4.1836 4.2465 4.3101 4.3746 4.4399 4.5061 4.5731 4.6410 4.7793 5.1010 5.3091 5.4163 5.5256 5.6371 5.7507 5.8666 5.9847 6.1051 6.3528 6.7424 6.1520 7.2135 8.2857 9.3685 6.8019 7.5233 6.3081 6.4684 7.4343 7.6625 8.8923 8.5830 9.7546 10.1591 6.6330 7.8983 9.2142 10.5828 7.1533 8.6540 10.2598 7.3359 8.9228 10.6366 12.4876 14.4866 7.7156 9.4872 11.4359 13.5795 15.9374 8.1152 10.0890 12.2997 14.7757 8.7537 11.0668 13.7268 16.7858 6.9753 9.2004 11.0285 7 8 9. 8.1420 9.5491 11.0266 8.3938 9.8975 11.4913 11.9780 13.0210 12.5779 14.2068 10.4622 10.9497 11.4639 12.1687 13.4121 17.5487 20.6546 24.1331 28.0291 10 12.0061 13.1808 13.8164 15.1929 20.3037 11 11.5668 12.8078 13.4864 14.9716 15.7836 16.6455 18.9771 17.5603 18.5312 24.3493 14.1920 15.6178 15.0258 16.6268 12 12.6825 15.9171 16.8699 17.8885 20.1407 21.3843 29.0017 18.8821 20.1406 22.9534 24.5227 27.9750 13 13.8093 14.6803 17.7130 21.4953 34.3519 14 14.9474 15.9739 17.0863 18.2919 19.5986 21.0151 22.5505 24.2149 26.0192 32.3926 40.5047 15 16.0969 17.2934 18.5989 20.0236 21.5786 23.2760 25.1290 27.1521 29.3609 31.7725 37.2797 47.5804 18.6393 20.1569 30.3243 33.7502 37.4502 41.4463 16 17.2579 21.8245 23.6575 25.6725 27.8881 33.0034 35.9497 42.7533 55.7175 17 20.0121 18.4304 19.6147 20.8109 22.8406 25.1169 22.0190 21.7616 23.4144 23.6975 25.6454 27.6712 25.8404 28.2129 30.9057 33.7600 36.7856 54.8645 79.0582 30.8402 33.9990 37.3790 40.9955 36.9737 40.5447 45.5992 51.1591 48.8837 18 19 20 65.0751 75.8364 88.2118 102.4436 21.4123 28.1324 30.5390 33.0660 55.7497 63.4397 72.0524 41.3013 46.0185 24.2974 26.8704 29.7781 45.7620 51.1601 57.2750 25 28.2432 32.0303 36.4593 41.6459 47.7271 63.2490 73.1059 84.7009 98.3471 133.3339 212.7930 34.7849 41.6603 113.2832 172.3168 47.5754 56.0849 73.6522 30 40.5681 66.4388 94.4608 136.3075 164.4940 241.3327 434.7451 35 49.9945 60.4621 90.3203 111.4348 138.2369 215.7108 271.0244 431.6635 881.1702 40 48.8864 60.4020 75.4013 95.0255 120.7998 154.7620 199.6351 259.0565 337.8824 442.5926 767.0914 1,779.0903 Used to calculate the future value of a series of equal pay ments made at the end of each period. For example: What is the future valuc of $4,000 per year for 6 years assuming an annual interest rate of 8%? For (n= 6, i = 8%), the FV factor is 7.3359. $4,000 per year for 6 years accumulates to $29,343.60 ($4,000 x 7.3359). |密出
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Calculating the Return On A Loan
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, accounting and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
FINANCIAL ACCOUNTING
FINANCIAL ACCOUNTING
Accounting
ISBN:
9781259964947
Author:
Libby
Publisher:
MCG
Accounting
Accounting
Accounting
ISBN:
9781337272094
Author:
WARREN, Carl S., Reeve, James M., Duchac, Jonathan E.
Publisher:
Cengage Learning,
Accounting Information Systems
Accounting Information Systems
Accounting
ISBN:
9781337619202
Author:
Hall, James A.
Publisher:
Cengage Learning,
Horngren's Cost Accounting: A Managerial Emphasis…
Horngren's Cost Accounting: A Managerial Emphasis…
Accounting
ISBN:
9780134475585
Author:
Srikant M. Datar, Madhav V. Rajan
Publisher:
PEARSON
Intermediate Accounting
Intermediate Accounting
Accounting
ISBN:
9781259722660
Author:
J. David Spiceland, Mark W. Nelson, Wayne M Thomas
Publisher:
McGraw-Hill Education
Financial and Managerial Accounting
Financial and Managerial Accounting
Accounting
ISBN:
9781259726705
Author:
John J Wild, Ken W. Shaw, Barbara Chiappetta Fundamental Accounting Principles
Publisher:
McGraw-Hill Education