On January 1, a company agrees to pay $28,000 in nine years. If the annual interest rate is 3%, determine how much cash the company can borrow with this agreement. (PV of $1, FV of $1, PVA of $1, and FVA of $1) (Use appropriate factor(s) from the tables provided. Round "Table Factor" to 4 decimal places.)
Transcribed Image Text: TABLE B.1
p = 1/(1 + iy"
%3D
Present Value of 1
Rate
Perlods
1%
2%
3%
4%
5%
6%
7%
8%
9%
10%
12%
15%
0.9174
0.8417
1
0.9901
0.9804
0.9709
0.9615
0.9524
0.9434
0.9346
0.9259
0.9091
0.8929
0.8696
0.9803
0.9612
0.9426
0.9246
0.9070
0.8900
0.8734
0.8573
0.8264
0.7972
0.7561
0.9423
0.9238
0.9057
0.9151
0.8885
0.8626
0.7513
0.6830
0.6209
0.9706
0.8638
0.7938
0.7722
0.7084
0.6499
3
0.8890
0.8396
0.8163
0.7118
0.6575
4
0.9610
0.8548
0.8219
0.8227
0.7921
0.7473
0.7050
0.7629
0.7130
0.7350
0.9515
0.9420
0.6355
0.5674
0.5066
0.5718
0.4972
0.7835
0.6806
0.8880
0.8375
0.7903
0.7462
0.6663
0.6302
0.5963
0.5645
0.4323
0.5470
0.5019
0.4604
7
0.9327
0.8706
0.8131
0.7599
0.7107
0.6651
0.6227
0.5835
0.5403
0.5002
0.5132
0.4523
0.3759
8.
0.9235
0.8535
0.8368
0.7894
0.7307
0.6768
0.6446
0.6274
0.5820
0.4665
0.4039
0.3269
0.9143
0.7664
0.7026
0.5919
0.5439
0.4241
0.3606
0.2843
0.9053
0.8963
0.8874
0.8787
0.6756
0.6496
0.6139
0.5847
10
0.8203
0.7441
0.3855
0.3220
0.5584
0.5268
0.5083
0.4632
0.4224
0.2472
0.8043
0.7885
0.7224
0.4751
0.3875
0.3505
0.2875
0.2567
0.2292
11
0.4289
0.2149
0.7014
0.4970
0.4688
12
0.6246
0.3186
0.1869
0.5568
0.5303
0.4440
0.4150
0.3971
0.3677
0.3555
0.3262
13
0.7730
0.6810
0.6006
0.2897
0.1625
0.8700
0.8613
0.8528
0.7579
0.7430
0.7284
0.6611
0.6419
0.4423
0.4173
0.3405
0.3152
0.2992
0.2745
0.2633
0.2394
0.1413
0.1229
14
0.5775
0.5051
0.4810
0.3878
0.3624
0.2046
0.1827
15
0.5553
0.4581
0.4363
16
0.6232
0.5339
0.3936
0.3387
0.2919
0.2519
0.2176
0.1631
0.1069
0.6050
0.5874
0.5703
17
0.8444
0.7142
0.5134
0.3714
0.3166
0.2703
0.2311
0.1978
0.1456
0.0929
0.8360
0.8277
0.7002
0.6864
0.4936
0.4746
18
0.4155
0.3503
0.3305
0.2959
0.2502
0.2317
0.2120
0.1799
0.1300
0.1161
0.0808
0.3957
19
20
0.2765
0.1945
0.1635
0.0703
0.5537
0.4776
0.4120
0.1784
0.1160
0.0754
0.0490
0.0318
0.8195
0.6730
0.4564
0.3769
0.3118
0.2584
0.2145
0.1486
0.1037
0.0611
0.7798
0.2953
0.2314
25
0.6095
0.3751
0.2330
0.1842
0.1460
0.0923
0.0588
0.0304
0.0994
0.0676
30
0.7419
0.5521
0.3083
0.0151
0.1741
0.1301
0.0972
0.1314
0.0573
0.5000
0.4529
0.0334
0.0189
0.0107
0.0937
35
40
0.0075
0.0037
0.7059
0.3554
0.2534
0.1813
0.0356
0.0221
0.6717
0.3066
0.2083
0.1420
0.0668
0.0460
*Used to compute the present valuc of a known future amount. For example: How much would you nced to invest today at 10% compounded semiannually to accumulate $5,000 in 6 years
from today? Using the factors of n= 12 and i = 5% (12 semiannual periods and a semiannual rate of 5%), the factor is 0.5568. You would need to invest $2,784 today ($5,000x0.5568).
TABLE B.2*
f = (1+ iy"
Future Value of 1
Rate
Periods
1%
2%
3%
4%
5%
6%
7%
8%
9%
10%
12%
15%
1.0000
1.0000
1.0400
1.0000
1.0000
1.0000
1.0300
1.0609
1.0000
1.0500
1.1025
1.0000
1.0600
1.1236
1.0000
1.0000
1.0000
1.0000
1.0000
1.0700
1.1449
1.0800
1.1664
1.2597
1.3605
1.0900
1.1881
1.1200
1.2544
1.4049
1.1500
1.3225
1.5209
1.0100
1.0200
1.1000
1.2100
1.3310
1.4641
1.0201
1.0404
1.0816
3
1.0303
1.0612
1.0927
1.1249
1.1576
1.1910
1.2250
1.2950
1.0406
1.0510
1.0615
1.0721
1.0829
1.0824
1.1041
1.1262
1.1699
1.2167
1.2653
1.4116
1.5386
1.6771
1.5735
1.7623
1.9738
1.7490
1.1255
1.1593
1.1941
1.2155
1.2763
1.3401
1.2625
1.3382
1.4185
1.3108
1.4026
1.5007
1.4693
1.6105
1.7716
2.0114
2.3131
6
1.5869
1.3159
1.3686
1.4233
1.4802
1.4071
1.4775
1.5513
2.2107
2.4760
2.7731
3.1058
3.4785
7
1.1487
1.2299
1.9487
1.5036
1.5938
1.6895
1.6058
1.7138
1.8509
1.9990
2.1589
1.8280
1.9926
2.1719
2.3674
2.6600
8
1.1717
1.0937
1.1046
1.2668
1.3048
1.3439
1.7182
1.8385
2.1436
2.3579
2.5937
3.0590
3.5179
4.0456
9
1.1951
1.2190
1.6289
1.7103
1.9672
2.1049
10
1.7908
11
1.1157
1.2434
1.2682
1.3842
1.4258
1.5395
1.8983
2.3316
2.5804
2.8531
4.6524
2.8127
5.3503
6.1528
12
1.1268
1.6010
1.7959
2.0122
2.2522
2.5182
3.1384
3.8960
13
1.1381
1.2936
1.4685
1.6651
1.8856
2.1329
2.4098
2.7196
3.0658
3.4523
4.3635
1.5126
1.5580
1.6047
1.9799
2.0789
2.1829
2.5785
2.7590
2.9522
3.1588
14
1.1495
1.1610
1.3195
1.3459
1.3728
1.7317
1.8009
2.2609
2.9372
3.1722
3.3417
3.7975
4.1772
4.5950
5.0545
4.8871
15
16
2.3966
2.5404
3.6425
3.9703
4.3276
5.4736
6.1304
6.8660
7.0757
8.1371
9.3576
1.1726
1.8730
3.4259
17
1.1843
1.4002
1.6528
1.9479
2.2920
2.6928
3.7000
10.7613
12.3755
14.2318
1.1961
1.4282
18
19
20
25
1.7024
1.7535
1.8061
3.3799
3.6165
3.8697
5.4274
4.7171
5.1417
5.6044
2.0258
2.1068
2.4066
2.5270
2.6533
3.3864
2.8543
3.0256
3.2071
3.9960
4.3157
4.6610
5.5599
6.1159
7.6900
8.6128
9.6463
1.2081
1.4568
1.4859
1.2202
2.1911
6.7275
16.3665
1.2824
1.6406
2.0938
2.6658
4.2919
6.8485
8.6231
10.8347
17.0001
32.9190
1.8114
1.9999
2.2080
30
17.4494
35
40
1.3478
1.4166
1.4889
2.4273
2.8139
3.2620
3.2434
3.9461
4.8010
4.3219
5.5160
5.7435
7.6861
10.2857
7.6123
10.6766
14.9745
10.0627
14.7853
21.7245
13.2677
20.4140
31.4094
28.1024
45.2593
29.9599
52.7996
93.0510
66.2118
133.1755
267.8635
7.0400
"Used to compute the future value of a known present amount. For example: What is the accumulatcd value of $3,000 invested today at 8% compounded quarterly for 5 years? Using
the factors ofn=20 and i = 2% (20 quarterly periods and a quarterly interest rate of 2%), the factor is 1.4859. Thc accumulated value is $4,457.70 ($3.000 x 1.4859).
1
TABLE B.3:
/i
(1 + i)"
p = |1-
Present Value of an Annuity of 1
Rate
Periods
1%
2%
3%
4%
5%
6%
7%
8%
9%
10%
12%
15%
0.9524
1.8594
0.9901
0.9804
0.9709
0.9615
0.9434
0.9346
0.9259
0.9174
0.9091
0.8929
0.8696
1.6257
1
1.9704
2.9410
3.9020
4.8534
5.7955
1.9135
2.8286
2
1.9416
1.8861
1.8334
1.8080
1.7833
1.7591
1.7355
1.6901
2.8839
2.7751
2.7232
2.6730
2.6243
2.5771
2.5313
2.4869
2.4018
2.2832
3.3121
3.9927
3.1699
3.7908
3.8077
3.5460
3.4651
4.2124
2.8550
3.3522
3.7845
3.7171
3.6299
3.3872
3.2397
3.0373
5
4.7135
4.5797
4.4518
4.3295
4.1002
3.8897
3.6048
6
5.6014
5.4172
5.2421
5.0757
4.9173
4.7665
4.6229
4.4859
4.3553
4.1114
7
6.7282
6.4720
6.2303
6.0021
5.7864
5.5824
5.3893
5.2064
5.0330
4.8684
4.5638
4.1604
6.4632
7.1078
5.3349
5.7590
8
7.6517
7.3255
7.0197
6.7327
6.2098
5.9713
5.7466
5.5348
4.9676
4.4873
8.5660
9.4713
5.3282
5.6502
5.9377
6.1944
6.4235
6.6282
8.1622
8.9826
9
7.7861
7.4353
6.8017
6.5152
7.0236
6.2469
5.9952
4.7716
10
8.5302
8.1109
7.7217
7.3601
6.7101
6.4177
6.1446
5.0188
10.3676
11.2551
11
9.7868
9.2526
8.7605
8.3064
7.8869
7.4987
7.1390
6.8052
6.4951
5.2337
9.3851
9.9856
10.5631
12
10.5753
9.9540
8.8633
8.3838
7.9427
7.5361
7.1607
6.8137
5.4206
11.3484
12.1062
10.6350
11.2961
7.1034
7.3667
13
12.1337
13.0037
9.3936
8.8527
8.3577
7.9038
7.4869
5.5831
14
9.8986
9.2950
8.7455
8.2442
7.7862
5.7245
15
13.8651
14.7179
12.8493
11.9379
11.1184
10.3797
9.7122
9.1079
8.5595
8.0607
7.6061
6.8109
5.8474
5.9542
6.0472
6.1280
16
13.5777
12.5611
11.6523
10.8378
10.1059
9.4466
8.8514
8.3126
7.8237
6.9740
14.2919
14.9920
10.4773
10.8276
9.1216
9.3719
8.5436
8.7556
17
15.5623
13.1661
12.1657
11.2741
9.7632
8.0216
7.1196
18
16.3983
13.7535
12.6593
11.6896
10.0591
8.2014
7.2497
19
17.2260
15.6785
14.3238
13.1339
12.0853
11.1581
10.3356
9.6036
8.9501
8.3649
7.3658
6.1982
12.4622
14.0939
10.5940
11.6536
8.5136
9.0770
20
18.0456
16.3514
14.8775
13.5903
11.4699
9.8181
9.1285
7.4694
6.2593
25
22.0232
19.5235
17.4131
15.6221
12.7834
10.6748
9.8226
7.8431
6.4641
30
25.8077
22.3965
19.6004
17.2920
15.3725
13.7648
12.4090
11.2578
10.2737
9.4269
8.0552
6.5660
35
29.4086
24.9986
21.4872
18.6646
16.3742
14.4982
12.9477
11.6546
10.5668
9.6442
8.1755
6.6166
40
32.8347
27.3555
23.1148
19.7928
17.1591
15.0463
13.3317
11.9246
10.7574
9.7791
8.2438
6.6418
*Used to calculate the present value of a series of equal payments made at the end of each period. For example: What is the present value of $2,000 per year for 10 years assuming an
annual interest rate of 9%? For (n = 10, i= 9%), the PV factor is 6.4177. $2,000 per year for 10 years is the equivalent of $12,835 today ($2,000 x 6.4177).
TABLE B.4$
f= [(1 +iy – 1]/i
Future Value of an Annuity of 1
Rate
Perlods
1%
2%
3%
4%
5%
6%
7%
8%
9%
10%
12%
15%
1.0000
2.0500
1.0000
2.0800
1.0000
1.0000
2.0100
1.0000
2.0200
1.0000
2.0400
1.0000
2.1200
1.0000
1.0000
2.0700
1.0000
2.0900
1
1.0000
1.0000
2.0300
2.0600
2.1000
2.1500
3
3.0301
3.0604
3.0909
3.1216
3.1525
3.1836
3.2149
3.2464
3.2781
3.3100
3.3744
3.4725
4
4.0604
4.9934
4.1216
5.2040
4.1836
4.2465
4.3101
4.3746
4.4399
4.5061
4.5731
4.6410
4.7793
5.1010
5.3091
5.4163
5.5256
5.6371
5.7507
5.8666
5.9847
6.1051
6.3528
6.7424
6.1520
7.2135
8.2857
9.3685
6.8019
7.5233
6.3081
6.4684
7.4343
7.6625
8.8923
8.5830
9.7546 10.1591
6.6330
7.8983
9.2142
10.5828
7.1533
8.6540
10.2598
7.3359
8.9228
10.6366
12.4876
14.4866
7.7156
9.4872
11.4359
13.5795
15.9374
8.1152
10.0890
12.2997
14.7757
8.7537
11.0668
13.7268
16.7858
6.9753
9.2004
11.0285
7
8
9.
8.1420
9.5491
11.0266
8.3938
9.8975
11.4913
11.9780
13.0210
12.5779
14.2068
10.4622 10.9497 11.4639
12.1687
13.4121
17.5487
20.6546
24.1331
28.0291
10
12.0061
13.1808
13.8164
15.1929
20.3037
11
11.5668
12.8078
13.4864
14.9716
15.7836
16.6455
18.9771
17.5603
18.5312
24.3493
14.1920
15.6178
15.0258
16.6268
12
12.6825
15.9171
16.8699
17.8885
20.1407
21.3843
29.0017
18.8821
20.1406
22.9534
24.5227
27.9750
13
13.8093
14.6803
17.7130
21.4953
34.3519
14
14.9474
15.9739 17.0863
18.2919
19.5986
21.0151
22.5505
24.2149
26.0192
32.3926
40.5047
15
16.0969
17.2934 18.5989
20.0236
21.5786
23.2760
25.1290
27.1521
29.3609
31.7725
37.2797
47.5804
18.6393 20.1569
30.3243
33.7502
37.4502
41.4463
16
17.2579
21.8245
23.6575
25.6725
27.8881
33.0034
35.9497
42.7533
55.7175
17
20.0121
18.4304
19.6147
20.8109 22.8406 25.1169
22.0190
21.7616
23.4144
23.6975
25.6454
27.6712
25.8404
28.2129
30.9057
33.7600
36.7856
54.8645
79.0582
30.8402
33.9990
37.3790
40.9955
36.9737
40.5447
45.5992
51.1591
48.8837
18
19
20
65.0751
75.8364
88.2118
102.4436
21.4123
28.1324
30.5390
33.0660
55.7497
63.4397
72.0524
41.3013
46.0185
24.2974 26.8704
29.7781
45.7620
51.1601
57.2750
25
28.2432
32.0303
36.4593
41.6459
47.7271
63.2490
73.1059
84.7009
98.3471
133.3339
212.7930
34.7849
41.6603
113.2832
172.3168
47.5754
56.0849
73.6522
30
40.5681
66.4388
94.4608
136.3075
164.4940 241.3327
434.7451
35
49.9945
60.4621
90.3203 111.4348
138.2369
215.7108 271.0244 431.6635
881.1702
40
48.8864
60.4020 75.4013
95.0255 120.7998
154.7620
199.6351
259.0565
337.8824 442.5926 767.0914
1,779.0903
Used to calculate the future value of a series of equal pay ments made at the end of each period. For example: What is the future valuc of $4,000 per year for 6 years assuming an
annual interest rate of 8%? For (n= 6, i = 8%), the FV factor is 7.3359. $4,000 per year for 6 years accumulates to $29,343.60 ($4,000 x 7.3359).
|密出