On a separate sheet of paper, prove the following is an identity. cosX/1+sinX + 1+sinX/cosX = 2secX

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
icon
Related questions
Question
On a separate sheet of paper, prove the following is an identity. cosX/1+sinX + 1+sinX/cosX = 2secX
Certainly! On an educational website, the transcribed content with explanations for the given image would be as follows:

---

**Mathematics Topic: Trigonometric Identities**

**Equation to Verify:**

\[
\frac{\cos x}{1 + \sin x} + \frac{1 + \sin x}{\cos x} = 2 \sec x 
\]

**Explanation and Steps to Verify:**

1. **Expression Simplification:**
   The left-hand side of the equation is:
   \[
   \frac{\cos x}{1 + \sin x} + \frac{1 + \sin x}{\cos x}
   \]
   
2. **Finding a Common Denominator:**
   To combine these two fractions, we need a common denominator. The common denominator for \(1 + \sin x\) and \(\cos x\) is \((1 + \sin x) \cos x \).

3. **Rewriting Each Term:**
   Hence, rewrite each fraction with the common denominator:
   \[
   \frac{\cos x \cdot \cos x}{(1 + \sin x) \cos x} + \frac{(1 + \sin x)(1 + \sin x)}{(1 + \sin x) \cos x}
   \]
   
4. **Simplify the Numerator:**
   Simplify the numerators of each fraction:
   \[
   \frac{\cos^2 x}{(1 + \sin x) \cos x} + \frac{(1 + \sin x)^2}{(1 + \sin x) \cos x}
   \]

5. **Combining the Fractions:**
   Combine the simplified fractions:
   \[
   \frac{\cos^2 x + (1 + \sin x)^2}{(1 + \sin x) \cos x}
   \]
   
6. **Expand and Simplify the Numerator:**
   Expand \((1 + \sin x)^2\):
   \[
   (1 + 2\sin x + \sin^2 x)
   \]
   
   So the numerator now becomes:
   \[
   \cos^2 x + 1 + 2\sin x + \sin^2 x
   \]

7. **Using Pythagorean Identity:**
   Notice that \(\cos^2 x +
Transcribed Image Text:Certainly! On an educational website, the transcribed content with explanations for the given image would be as follows: --- **Mathematics Topic: Trigonometric Identities** **Equation to Verify:** \[ \frac{\cos x}{1 + \sin x} + \frac{1 + \sin x}{\cos x} = 2 \sec x \] **Explanation and Steps to Verify:** 1. **Expression Simplification:** The left-hand side of the equation is: \[ \frac{\cos x}{1 + \sin x} + \frac{1 + \sin x}{\cos x} \] 2. **Finding a Common Denominator:** To combine these two fractions, we need a common denominator. The common denominator for \(1 + \sin x\) and \(\cos x\) is \((1 + \sin x) \cos x \). 3. **Rewriting Each Term:** Hence, rewrite each fraction with the common denominator: \[ \frac{\cos x \cdot \cos x}{(1 + \sin x) \cos x} + \frac{(1 + \sin x)(1 + \sin x)}{(1 + \sin x) \cos x} \] 4. **Simplify the Numerator:** Simplify the numerators of each fraction: \[ \frac{\cos^2 x}{(1 + \sin x) \cos x} + \frac{(1 + \sin x)^2}{(1 + \sin x) \cos x} \] 5. **Combining the Fractions:** Combine the simplified fractions: \[ \frac{\cos^2 x + (1 + \sin x)^2}{(1 + \sin x) \cos x} \] 6. **Expand and Simplify the Numerator:** Expand \((1 + \sin x)^2\): \[ (1 + 2\sin x + \sin^2 x) \] So the numerator now becomes: \[ \cos^2 x + 1 + 2\sin x + \sin^2 x \] 7. **Using Pythagorean Identity:** Notice that \(\cos^2 x +
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning