ompanies in the U.S. car rental market vary greatly in terms of the size of the fleet, the number of locations, and annual revenue. In 2011, Hertz had 320,000 cars in service and annual revenue of approximately $4.2 billion. Suppose the following data show the number of cars in service (1,000s) and the annual revenue ($ millions) for six smaller car rental companies. Company Cars (1,000s) Revenue ($ millions) Company A 11.5 120 Company B 10.0 133 Company C 9.0 98 Company D 5.5 37 Company E 4.2 38 Company F 3.3 30 (a) Develop a scatter diagram with the number of cars in service as the independent variable. A scatter diagram has 6 points plotted on it. The horizontal axis ranges from 0 to 14 and is labeled: Cars in Service (1,000s). The vertical axis ranges from 0 to 160 and is labeled: Annual Revenue ($ millions). The points are plotted from left to right in an upward, diagonal direction starting from the lower left corner of the diagram and are between 3 to 12 on the horizontal axis and between 30 to 140 on the vertical axis. Each consecutive point is higher on the diagram than the previous point. The 3 leftmost points and the 3 rightmost points have a large amount of space between them.   A scatter diagram has 6 points plotted on it. The horizontal axis ranges from 0 to 14 and is labeled: Cars in Service (1,000s). The vertical axis ranges from 0 to 160 and is labeled: Annual Revenue ($ millions). The points are plotted from left to right in an upward, diagonal direction starting from the lower left corner of the diagram and are between 3 to 12 on the horizontal axis and between 40 to 150 on the vertical axis. The fifth point from the left is noticeably higher on the diagram than both the fourth and sixth points from the left. The 3 leftmost points and the 3 rightmost points have a large amount of space between them.   A scatter diagram has 6 points plotted on it. The horizontal axis ranges from 0 to 14 and is labeled: Cars in Service (1,000s). The vertical axis ranges from 0 to 160 and is labeled: Annual Revenue ($ millions). The points are plotted from left to right in a downward, diagonal direction starting from the upper left corner of the diagram and are between 3 to 12 on the horizontal axis and between 30 to 140 on the vertical axis. The second point from the left is noticeably higher on the diagram than both the first and third points from the left. The 3 leftmost points and the 3 rightmost points have a large amount of space between them.   A scatter diagram has 6 points plotted on it. The horizontal axis ranges from 0 to 14 and is labeled: Cars in Service (1,000s). The vertical axis ranges from 0 to 160 and is labeled: Annual Revenue ($ millions). The points are plotted from left to right in an upward, diagonal direction starting from the lower left corner of the diagram and are between 3 to 12 on the horizontal axis and between 30 to 140 on the vertical axis. The fifth point from the left is noticeably higher on the diagram than both the fourth and sixth points from the left. The 3 leftmost points and the 3 rightmost points have a large amount of space between them. (b) What does the scatter diagram developed in part (a) indicate about the relationship between the two variables? There appears to be a positive linear relationship between cars in service (1,000s) and annual revenue ($ millions).There appears to be no noticeable relationship between cars in service (1,000s) and annual revenue ($ millions).    There appears to be a negative linear relationship between cars in service (1,000s) and annual revenue ($ millions). (c) Use the least squares method to develop the estimated regression equation that can be used to predict annual revenue (in $ millions) given the number of cars in service (in 1,000s). (Round your numerical values to three decimal places.) ŷ =        (d) For every additional car placed in service, estimate how much annual revenue will change (in dollars). (Round your answer to the nearest integer.) Annual revenue will increase by $  , for every additional car placed in service. (e) A particular rental company has 7,000 cars in service. Use the estimated regression equation developed in part (c) to predict annual revenue (in $ millions) for this company. (Round your answer to the nearest integer.) $  million

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
icon
Concept explainers
Topic Video
Question
ompanies in the U.S. car rental market vary greatly in terms of the size of the fleet, the number of locations, and annual revenue. In 2011, Hertz had 320,000 cars in service and annual revenue of approximately $4.2 billion. Suppose the following data show the number of cars in service (1,000s) and the annual revenue ($ millions) for six smaller car rental companies.
Company Cars
(1,000s)
Revenue
($ millions)
Company A 11.5 120
Company B 10.0 133
Company C 9.0 98
Company D 5.5 37
Company E 4.2 38
Company F 3.3 30
(a)
Develop a scatter diagram with the number of cars in service as the independent variable.
A scatter diagram has 6 points plotted on it. The horizontal axis ranges from 0 to 14 and is labeled: Cars in Service (1,000s). The vertical axis ranges from 0 to 160 and is labeled: Annual Revenue ($ millions). The points are plotted from left to right in an upward, diagonal direction starting from the lower left corner of the diagram and are between 3 to 12 on the horizontal axis and between 30 to 140 on the vertical axis. Each consecutive point is higher on the diagram than the previous point. The 3 leftmost points and the 3 rightmost points have a large amount of space between them.
 
A scatter diagram has 6 points plotted on it. The horizontal axis ranges from 0 to 14 and is labeled: Cars in Service (1,000s). The vertical axis ranges from 0 to 160 and is labeled: Annual Revenue ($ millions). The points are plotted from left to right in an upward, diagonal direction starting from the lower left corner of the diagram and are between 3 to 12 on the horizontal axis and between 40 to 150 on the vertical axis. The fifth point from the left is noticeably higher on the diagram than both the fourth and sixth points from the left. The 3 leftmost points and the 3 rightmost points have a large amount of space between them.
 
A scatter diagram has 6 points plotted on it. The horizontal axis ranges from 0 to 14 and is labeled: Cars in Service (1,000s). The vertical axis ranges from 0 to 160 and is labeled: Annual Revenue ($ millions). The points are plotted from left to right in a downward, diagonal direction starting from the upper left corner of the diagram and are between 3 to 12 on the horizontal axis and between 30 to 140 on the vertical axis. The second point from the left is noticeably higher on the diagram than both the first and third points from the left. The 3 leftmost points and the 3 rightmost points have a large amount of space between them.
 
A scatter diagram has 6 points plotted on it. The horizontal axis ranges from 0 to 14 and is labeled: Cars in Service (1,000s). The vertical axis ranges from 0 to 160 and is labeled: Annual Revenue ($ millions). The points are plotted from left to right in an upward, diagonal direction starting from the lower left corner of the diagram and are between 3 to 12 on the horizontal axis and between 30 to 140 on the vertical axis. The fifth point from the left is noticeably higher on the diagram than both the fourth and sixth points from the left. The 3 leftmost points and the 3 rightmost points have a large amount of space between them.
(b)
What does the scatter diagram developed in part (a) indicate about the relationship between the two variables?
There appears to be a positive linear relationship between cars in service (1,000s) and annual revenue ($ millions).There appears to be no noticeable relationship between cars in service (1,000s) and annual revenue ($ millions).    There appears to be a negative linear relationship between cars in service (1,000s) and annual revenue ($ millions).
(c)
Use the least squares method to develop the estimated regression equation that can be used to predict annual revenue (in $ millions) given the number of cars in service (in 1,000s). (Round your numerical values to three decimal places.)
ŷ = 
 
 
 
(d)
For every additional car placed in service, estimate how much annual revenue will change (in dollars). (Round your answer to the nearest integer.)
Annual revenue will increase by $  , for every additional car placed in service.
(e)
A particular rental company has 7,000 cars in service. Use the estimated regression equation developed in part (c) to predict annual revenue (in $ millions) for this company. (Round your answer to the nearest integer.)
$  million
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Application of Algebra
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman