olve the equation 8cos8+4=10. Express the answer in degree measure and approximate the angular measure to the nearest enth of a degree. mny 48.6°+360°k or 131.4° + 360° k 41.4°+360°k or 138.6° + 360°k 41.4°+360°k or 318.6° + 360° k 138.6°+360°k or 221.4° +360°k 20 Q Search † 4:17 PM 6/25/2023

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Solving the Equation 8cosθ + 4 = 10**

**Instructions:**
Solve the equation \(8cosθ + 4 = 10\). Express the answer in degree measure and approximate the angular measure to the nearest tenth of a degree.

**Multiple Choice Options:**

1. \(48.6^\circ + 360^\circ k \quad or \quad 131.4^\circ + 360^\circ k\)
2. \(41.4^\circ + 360^\circ k \quad or \quad 138.6^\circ + 360^\circ k\)  ⬅️ This is selected.
3. \(41.4^\circ + 360^\circ k \quad or \quad 318.6^\circ + 360^\circ k\)
4. \(138.6^\circ + 360^\circ k \quad or \quad 221.4^\circ + 360^\circ k\)

**Explanation:**
Given the equation:

\[8cosθ + 4 = 10\]

First, isolate \(cosθ\):

\[8cosθ = 10 - 4\]
\[8cosθ = 6\]
\[cosθ = \frac{6}{8}\]
\[cosθ = \frac{3}{4}\]

Next, we find the angle θ whose cosine is \( \frac{3}{4} \). We use the arccos function:

\[θ = arccos\left(\frac{3}{4}\right)\]

This calculation gives us two primary solutions within one full rotation (0° to 360°):

\[θ_1 ≈ 41.4^\circ\]
\[θ_2 = 360° - 41.4° ≈ 318.6^\circ\]

Since the cosine function is periodic with a period of 360°, these solutions repeat every 360°:

\[θ_1 = 41.4^\circ + 360^\circ k\]
\[θ_2 = 318.6^\circ + 360^\circ k\]

Therefore, the correct selection should be:

\[41.4^\circ + 360^\circ k \quad or \quad 318.6^\circ + 360^\circ k\]

So the closest match in the given options is:

**Option 3.**
Transcribed Image Text:**Solving the Equation 8cosθ + 4 = 10** **Instructions:** Solve the equation \(8cosθ + 4 = 10\). Express the answer in degree measure and approximate the angular measure to the nearest tenth of a degree. **Multiple Choice Options:** 1. \(48.6^\circ + 360^\circ k \quad or \quad 131.4^\circ + 360^\circ k\) 2. \(41.4^\circ + 360^\circ k \quad or \quad 138.6^\circ + 360^\circ k\) ⬅️ This is selected. 3. \(41.4^\circ + 360^\circ k \quad or \quad 318.6^\circ + 360^\circ k\) 4. \(138.6^\circ + 360^\circ k \quad or \quad 221.4^\circ + 360^\circ k\) **Explanation:** Given the equation: \[8cosθ + 4 = 10\] First, isolate \(cosθ\): \[8cosθ = 10 - 4\] \[8cosθ = 6\] \[cosθ = \frac{6}{8}\] \[cosθ = \frac{3}{4}\] Next, we find the angle θ whose cosine is \( \frac{3}{4} \). We use the arccos function: \[θ = arccos\left(\frac{3}{4}\right)\] This calculation gives us two primary solutions within one full rotation (0° to 360°): \[θ_1 ≈ 41.4^\circ\] \[θ_2 = 360° - 41.4° ≈ 318.6^\circ\] Since the cosine function is periodic with a period of 360°, these solutions repeat every 360°: \[θ_1 = 41.4^\circ + 360^\circ k\] \[θ_2 = 318.6^\circ + 360^\circ k\] Therefore, the correct selection should be: \[41.4^\circ + 360^\circ k \quad or \quad 318.6^\circ + 360^\circ k\] So the closest match in the given options is: **Option 3.**
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning