Ok I need some help as regards to the following task python code using pandas Expand multiple days and repeat the whole calculation steps from the beginning with 2 different dates used in df0 and df1 this is my solution is this the proper way of writing the code and could you explain what is highlighted in bold without changing anything. #explain what this line does d0dtlist=['2023-04-09',2023-04-12] d1dtlist=['2023-04-09',2023-04-12] #creating an empty dataframe multidf = pd.DataFrame() for d1date,d2date in zip(d1dtlist,d0dtlist): #reading from the sql table df0=pd.read_sql(sql.format(d0=d1date),con) df1=pd.read_sql(sql.format(d1=d1date),con) #merge the dataframe dfa=df0.merge(df1,on=['CurrencyCurve','rateofmaturity'],how='outer',suffixes=('0','1') #sort the values based on the following dfa.sort_values(['CurrencyCurve','rateofmaturity']) dfb=dfa.copy() # Iterate over each row of the dataframe allcurve=dfb.CurrencyCurve.unique() for curve in allcurve: # Check if rate_0 is NaN and perform interpolation if pd.isna(df.loc[dfb['CurrencyCurve'] == curve, 'rate_0']).any(): tmp0 = df.loc[(dfb['CurrencyCurve'] == curve) & (~pd.isna(dfb['rate_0'])), ['daystomature', 'rate_0']] #create the interpolation function interpolate_rate_0 = interp1d(tmp0['daystomature'], tmp0['rate_0'], kind='linear', fill_value='extrapolate') #use the interpolation function to fill in the missing values dfb.loc[dfb['CurrencyCurve'] == curve, 'rate_0'] = interpolate_rate_0(dfb.loc[dfb['CurrencyCurve'] == curve, 'daystomature']) # Check if rate_1 is NaN and perform interpolation if pd.isna(dfb.loc[dfb['CurrencyCurve'] == curve, 'rate_1']).any(): tmp1 = dfb.loc[(dfb['CurrencyCurve'] == curve) & (~pd.isna(dfb['rate_1'])), ['daystomature', 'rate_1']] #create the interpolatio function interpolate_rate_1 = interp1d(tmp1['daystomature'], tmp1['rate_1'], kind='linear', fill_value='extrapolate') #use the interpolation function to fill in the missing values dfb.loc[dfb['CurrencyCurve'] == curve, 'rate_1'] = interpolate_rate_1(dfb.loc[dfb['CurrencyCurve'] == curve, 'daystomature']) dfb['rate_change_final']=(dfb['rate_1']-dfb['rate_0')*100 #add this to distinguish beteen dates - is this the right way to put it and is there anything else missing ? dfb['date']=d1date   #joining multi=pd.concat(['multidf',dfb])   thanks

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

Ok I need some help as regards to the following task python code using pandas

  1. Expand multiple days and repeat the whole calculation steps from the beginning with 2 different dates used in df0 and df1

this is my solution is this the proper way of writing the code and could you explain what is highlighted in bold without changing anything.

#explain what this line does

d0dtlist=['2023-04-09',2023-04-12]

d1dtlist=['2023-04-09',2023-04-12]

#creating an empty dataframe

multidf = pd.DataFrame()

for d1date,d2date in zip(d1dtlist,d0dtlist):

#reading from the sql table

df0=pd.read_sql(sql.format(d0=d1date),con)

df1=pd.read_sql(sql.format(d1=d1date),con)

#merge the dataframe

dfa=df0.merge(df1,on=['CurrencyCurve','rateofmaturity'],how='outer',suffixes=('0','1')

#sort the values based on the following

dfa.sort_values(['CurrencyCurve','rateofmaturity'])

dfb=dfa.copy()

# Iterate over each row of the dataframe

allcurve=dfb.CurrencyCurve.unique()

for curve in allcurve:

# Check if rate_0 is NaN and perform interpolation

if pd.isna(df.loc[dfb['CurrencyCurve'] == curve, 'rate_0']).any():

tmp0 = df.loc[(dfb['CurrencyCurve'] == curve) & (~pd.isna(dfb['rate_0'])), ['daystomature', 'rate_0']]

#create the interpolation function

interpolate_rate_0 = interp1d(tmp0['daystomature'], tmp0['rate_0'], kind='linear', fill_value='extrapolate')

#use the interpolation function to fill in the missing values

dfb.loc[dfb['CurrencyCurve'] == curve, 'rate_0'] = interpolate_rate_0(dfb.loc[dfb['CurrencyCurve'] == curve, 'daystomature'])

# Check if rate_1 is NaN and perform interpolation

if pd.isna(dfb.loc[dfb['CurrencyCurve'] == curve, 'rate_1']).any():

tmp1 = dfb.loc[(dfb['CurrencyCurve'] == curve) & (~pd.isna(dfb['rate_1'])), ['daystomature', 'rate_1']]

#create the interpolatio function

interpolate_rate_1 = interp1d(tmp1['daystomature'], tmp1['rate_1'], kind='linear', fill_value='extrapolate')

#use the interpolation function to fill in the missing values

dfb.loc[dfb['CurrencyCurve'] == curve, 'rate_1'] = interpolate_rate_1(dfb.loc[dfb['CurrencyCurve'] == curve, 'daystomature'])

dfb['rate_change_final']=(dfb['rate_1']-dfb['rate_0')*100

#add this to distinguish beteen dates - is this the right way to put it and is there anything else missing ?

dfb['date']=d1date

 

#joining

multi=pd.concat(['multidf',dfb])

 

thanks

Expert Solution
steps

Step by step

Solved in 5 steps with 1 images

Blurred answer
Knowledge Booster
Datatypes
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education