Three different bacteria are cultured in one environment and feed on three nutrients. Each individual of species I consumes 1 unit of each of the first and second nutrients and 2 units of the third nutrient. Each individual of species II consumes 2 units of the first nutrient and 2 units of the third nutrient. Each individual of species III consumes 2 units of the first nutrient, 3 units of the second nutrient, and 5 units of the third nutrient. If the culture is given 5300 units of the first nutrient, 7500 units of the second nutrient, and 12,800 units of the third nutrient, how many of each species can be supported such that all of the nutrients are consumed? (Let x = species I, y = species II, and z = species III. If there are infinitely many solutions, express your answers in terms of z as in Example 3.) (x, y, z) =              ,  where 2200 ≤ z ≤ 2500

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Three different bacteria are cultured in one environment and feed on three nutrients. Each individual of species I consumes 1 unit of each of the first and second nutrients and 2 units of the third nutrient. Each individual of species II consumes 2 units of the first nutrient and 2 units of the third nutrient. Each individual of species III consumes 2 units of the first nutrient, 3 units of the second nutrient, and 5 units of the third nutrient. If the culture is given 5300 units of the first nutrient, 7500 units of the second nutrient, and 12,800 units of the third nutrient, how many of each species can be supported such that all of the nutrients are consumed? (Let x = species I, y = species II, and z = species III. If there are infinitely many solutions, express your answers in terms of z as in Example 3.)

(x, y, z) = 
 
 
 
 
 
 
 
,

 where 2200 ≤ z ≤ 2500

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Matrix Factorization
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,