of the following differential equations is homogeneous? wich one (x² + y²) dx + xy dy = 0 + (3 xy²-4y) dx + (x²4 - x) dy = 0 - (+4² - 5x²y) dx + (x³y² + 4xy) dy = 0 x3+y2 (3 xy - 4) dx + (2x² + 3y²) dy = 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Of the following differential equations, which one is homogeneous?
of the following differential equations
is homogeneous?
Wich one
→ (x² + y²) dx + xy dy = 0
(3x4 ²-4y) dx + (x²y - x) dy = (
- (³5²+4²- 5x²y) dx + (x³y ² + 4 xy) dy = 0
(3xy-4) dx + (2x² + 3y²) dy=0
Galaxy A71
Transcribed Image Text:of the following differential equations is homogeneous? Wich one → (x² + y²) dx + xy dy = 0 (3x4 ²-4y) dx + (x²y - x) dy = ( - (³5²+4²- 5x²y) dx + (x³y ² + 4 xy) dy = 0 (3xy-4) dx + (2x² + 3y²) dy=0 Galaxy A71
Expert Solution
Step 1: ''Introduction to the solution''

Recall  the  fact  that a  homogenous  differential  equations are  equation that  contains  homogenous  function.

We  can  solve  the  homogenous differential  equation  of the  form fraction numerator d y over denominator d x end fraction equals f left parenthesis x comma y right parenthesis where  f left parenthesis x comma y right parenthesis space space is  a  homogenous  function  by  simply  replacing  y equals v x rightwards double arrow fraction numerator d y over denominator d x end fraction equals v plus x fraction numerator d v over denominator d x end fraction.

Important fact: A function  of two  variables  f left parenthesis x comma y right parenthesis space is  called  homogenous  function of degree n if 

f left parenthesis t x comma t y right parenthesis equals t to the power of n f left parenthesis x comma y right parenthesis space space f o r space a n y space n element of straight natural numbers.

(1) The  given equation  is open parentheses x squared plus y squared close parentheses d x plus x y d y equals 0

                                      rightwards double arrow fraction numerator d y over denominator d x end fraction equals negative fraction numerator open parentheses x squared plus y squared close parentheses over denominator x y end fraction equals f left parenthesis x comma y right parenthesis space left parenthesis s a y right parenthesis......... left parenthesis 1 right parenthesis

Now, f left parenthesis t x comma t y right parenthesis equals negative fraction numerator t squared space open parentheses x squared plus y squared close parentheses over denominator t squared x y end fraction equals space t to the power of 0 f left parenthesis x comma y right parenthesis

rightwards double arrow f left parenthesis x comma y right parenthesis space spaceis  homogenous  function of degree  0  and  so  the  given differential  equation(1)  is  homogenous.

steps

Step by step

Solved in 3 steps with 19 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,