Obtain the z-transform of the following: x(n)=na" sin(an)u(n)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Obtain the z-transform of the following:
x(n)=na" sin(an)u(n)
X(z)=
X(z)=-
X(z)=-
X(z) =
X(z)=
X(z)=-
O
[az-¹+(az-¹)²] sin(a)
[1-2acos(@)z-¹ + a²z-²1²"
[az-1-(az-1)³] sin(a)
[1-2acos(w)2-¹+ a²z-2]²
[az-1-(az-1)²] sin(a)
[1-2acos(w)z-¹ + a²z-21²¹
[az-¹+ (az-¹)³] sin(a)
[1 −2acos(w)z−¹+ a²z−²1²
[(az-1)2-(az-1)³]sin()
[1-2acos(w)z¹+ a²z-²]²"
[(az-1)²+(az-1)³]sin(@)
[1-2acos(w)2-¹ + a²z-2]²
·|z|>a
|z|>a
|z|>a
. |z|>a
|z|>a
|=| > a
Transcribed Image Text:Obtain the z-transform of the following: x(n)=na" sin(an)u(n) X(z)= X(z)=- X(z)=- X(z) = X(z)= X(z)=- O [az-¹+(az-¹)²] sin(a) [1-2acos(@)z-¹ + a²z-²1²" [az-1-(az-1)³] sin(a) [1-2acos(w)2-¹+ a²z-2]² [az-1-(az-1)²] sin(a) [1-2acos(w)z-¹ + a²z-21²¹ [az-¹+ (az-¹)³] sin(a) [1 −2acos(w)z−¹+ a²z−²1² [(az-1)2-(az-1)³]sin() [1-2acos(w)z¹+ a²z-²]²" [(az-1)²+(az-1)³]sin(@) [1-2acos(w)2-¹ + a²z-2]² ·|z|>a |z|>a |z|>a . |z|>a |z|>a |=| > a
Expert Solution
steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,