Obtain the transfer function of the system (steps required) -5 -25 -5] 1 x2 +0 u 1 I3 y = 0 25 5] r2
Obtain the transfer function of the system (steps required) -5 -25 -5] 1 x2 +0 u 1 I3 y = 0 25 5] r2
Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
Related questions
Question
![To obtain the transfer function of the system, follow these steps:
**State-Space Representation:**
Consider the system given in the state-space form:
\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\dot{x}_3
\end{bmatrix}
=
\begin{bmatrix}
-5 & -25 & -5 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
+
\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}
u
\]
The output equation is:
\[
y =
\begin{bmatrix}
0 & 25 & 5
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
\]
**Explanation:**
1. **State Vector:**
- \(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\) represents the state variables of the system.
2. **State Matrix (A):**
- \(\begin{bmatrix} -5 & -25 & -5 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}\) is the system matrix.
3. **Input Matrix (B):**
- \(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}\) represents how the input \( u \) affects the states.
4. **Output Matrix (C):**
- \(\begin{bmatrix} 0 & 25 & 5 \end{bmatrix}\) is used to compute the output \( y \) from the state vector.
**Objective:**
The aim is to derive the transfer function by transforming the state-space model into the frequency (Laplace) domain and expressing \( Y(s) \) in terms of \( U(s) \).
**Steps:**
1. Using Laplace transforms, convert](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ff83af5dd-3182-4e6c-a1b5-32e4ba734fe8%2F16887c16-1807-4223-897f-63c938e541bb%2Fnximi7d_processed.jpeg&w=3840&q=75)
Transcribed Image Text:To obtain the transfer function of the system, follow these steps:
**State-Space Representation:**
Consider the system given in the state-space form:
\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\dot{x}_3
\end{bmatrix}
=
\begin{bmatrix}
-5 & -25 & -5 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
+
\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}
u
\]
The output equation is:
\[
y =
\begin{bmatrix}
0 & 25 & 5
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
\]
**Explanation:**
1. **State Vector:**
- \(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\) represents the state variables of the system.
2. **State Matrix (A):**
- \(\begin{bmatrix} -5 & -25 & -5 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}\) is the system matrix.
3. **Input Matrix (B):**
- \(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}\) represents how the input \( u \) affects the states.
4. **Output Matrix (C):**
- \(\begin{bmatrix} 0 & 25 & 5 \end{bmatrix}\) is used to compute the output \( y \) from the state vector.
**Objective:**
The aim is to derive the transfer function by transforming the state-space model into the frequency (Laplace) domain and expressing \( Y(s) \) in terms of \( U(s) \).
**Steps:**
1. Using Laplace transforms, convert
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
Given: system matrix A, input matrix B, output matrix C
Find transfer function
Step by step
Solved in 3 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Introductory Circuit Analysis (13th Edition)](https://www.bartleby.com/isbn_cover_images/9780133923605/9780133923605_smallCoverImage.gif)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
![Delmar's Standard Textbook Of Electricity](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
![Programmable Logic Controllers](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
![Introductory Circuit Analysis (13th Edition)](https://www.bartleby.com/isbn_cover_images/9780133923605/9780133923605_smallCoverImage.gif)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
![Delmar's Standard Textbook Of Electricity](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
![Programmable Logic Controllers](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
![Fundamentals of Electric Circuits](https://www.bartleby.com/isbn_cover_images/9780078028229/9780078028229_smallCoverImage.gif)
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
![Electric Circuits. (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134746968/9780134746968_smallCoverImage.gif)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
![Engineering Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780078028151/9780078028151_smallCoverImage.gif)
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,