Obtain the limit of|| (n+l) cos lim = lim (n+1)! Cos 学) (e+l)e n! cos( = lim n- (n+1)! cos() n!(1) (n+1)m!(1) - kos (#)| = 1] (n+1)x = lim = lim (n+1) Apply the limit, lim || 0+1 = 0 < 1 = to search O Bi 56°F Sunny ^ 3 ô & o

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

I am not sure why cos((n+1)pi/3) is equal to cos((n)pi/3). I am also unsure as to how they cancel out to then result in lim n->infinity (1/n+1).

## Understanding the Limit of Sequences

### Objective
Our goal is to obtain and apply the limit of the sequence described by \( \left| \frac{a_{n+1}}{a_n} \right| \).

### Step-by-Step Solution

**Step 1: Obtain the Limit**

- We start by considering the limit:
  
  \[
  \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|
  \]

- Rewrite the expression:

  \[
  \lim_{n \to \infty} \left| \frac{\frac{(n+1)!}{3}}{\frac{n!}{3}} \right|
  \]

- Simplify:

  \[
  = \lim_{n \to \infty} \left| \frac{n! \cdot \cos\left(\frac{(n+1)\pi}{3}\right)}{(n+1)! \cdot \cos\left(\frac{n\pi}{3}\right)} \right|
  \]

- Further simplification:

  \[
  = \lim_{n \to \infty} \left| \frac{n! \cdot \cos\left(\frac{(n+1)\pi}{3}\right)}{(n+1) \cdot n! \cdot \cos\left(\frac{n\pi}{3}\right)} \right|
  \]

- The limit then becomes:

  \[
  = \lim_{n \to \infty} \frac{1}{n+1}
  \]

**Step 2: Apply the Limit**

- Applying the limit results in:

  \[
  \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{\infty + 1}
  \]

- Which simplifies to:

  \[
  = \frac{1}{\infty}
  \]

- Resulting in:

  \[
  = 0 < 1
  \]

### Conclusion

The process shows that \( \left| \frac{a_{n+1}}{a_n} \right| \) approaches 0 as \( n \) approaches infinity, confirming the convergence
Transcribed Image Text:## Understanding the Limit of Sequences ### Objective Our goal is to obtain and apply the limit of the sequence described by \( \left| \frac{a_{n+1}}{a_n} \right| \). ### Step-by-Step Solution **Step 1: Obtain the Limit** - We start by considering the limit: \[ \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \] - Rewrite the expression: \[ \lim_{n \to \infty} \left| \frac{\frac{(n+1)!}{3}}{\frac{n!}{3}} \right| \] - Simplify: \[ = \lim_{n \to \infty} \left| \frac{n! \cdot \cos\left(\frac{(n+1)\pi}{3}\right)}{(n+1)! \cdot \cos\left(\frac{n\pi}{3}\right)} \right| \] - Further simplification: \[ = \lim_{n \to \infty} \left| \frac{n! \cdot \cos\left(\frac{(n+1)\pi}{3}\right)}{(n+1) \cdot n! \cdot \cos\left(\frac{n\pi}{3}\right)} \right| \] - The limit then becomes: \[ = \lim_{n \to \infty} \frac{1}{n+1} \] **Step 2: Apply the Limit** - Applying the limit results in: \[ \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{\infty + 1} \] - Which simplifies to: \[ = \frac{1}{\infty} \] - Resulting in: \[ = 0 < 1 \] ### Conclusion The process shows that \( \left| \frac{a_{n+1}}{a_n} \right| \) approaches 0 as \( n \) approaches infinity, confirming the convergence
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning