[o o] 0 0 - 6. is called the: D. multiplicative inverse E. none of these. A. inverse B. determinant C. additive inverse [7 -9] -5 b 2 -3] _7. If , then the values of a and b are: + а -5 -6 -6 C. a = -8, b = -6 D. a = 6, b = –8 -1 E. a = -6, b = -8 A. a = -8, b = 6 B. a = 8, b = 6 -2 -1 _8. -3 --1 -3] is equal to: – 5 1 -3 -4 А. -1 -8 E. None of these. 5 -4 -5 [-1 2] –4 -1] D. 5 2 3 -5 2 -8 7 9. If 7 then the value of a is: -1 -5 -4 a А. 1 В. 2 [5 6] С.З D. -3 E. -4 [3 -5] 10 1C C. B.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Го
_6.
is called the:
A. inverse
D. multiplicative inverse
E. none of these.
B. determinant
C. additive inverse
[7 -9
_7. If
-5 b
2 -3
+
, then the values of a and b are:
-5
2
-1
-6 -6
C. a = -8, b = -6
D. a = 6, b = -8
A. a = -8, b = 6
B. a = 8, b = 6
-2 -1
_ 8.
-3 4
E. a = -6, b = -8
-1 -3
is equal to:
1
-
-8
-3
А.
-8
-1
С.
E. None of these.
5
-5
-1 2
В.
-4 -1]
D.
5
3
-8
-5 2
7
_9. If
7
then the value of a is:
-1
-5 -4
a
А. 1
В. 2
[5 6
С. 3
D. -3
E. -4
3
and B =
- 2
-5
, then A – 2B is:
1
10. If A =
7 8
11 6
8 1
A.
5 9
-1 16
С.
11 6
E.
|-1 15
[11 15]
В.
3
[15 -1]
D.
6 11
6
2.
Transcribed Image Text:Го _6. is called the: A. inverse D. multiplicative inverse E. none of these. B. determinant C. additive inverse [7 -9 _7. If -5 b 2 -3 + , then the values of a and b are: -5 2 -1 -6 -6 C. a = -8, b = -6 D. a = 6, b = -8 A. a = -8, b = 6 B. a = 8, b = 6 -2 -1 _ 8. -3 4 E. a = -6, b = -8 -1 -3 is equal to: 1 - -8 -3 А. -8 -1 С. E. None of these. 5 -5 -1 2 В. -4 -1] D. 5 3 -8 -5 2 7 _9. If 7 then the value of a is: -1 -5 -4 a А. 1 В. 2 [5 6 С. 3 D. -3 E. -4 3 and B = - 2 -5 , then A – 2B is: 1 10. If A = 7 8 11 6 8 1 A. 5 9 -1 16 С. 11 6 E. |-1 15 [11 15] В. 3 [15 -1] D. 6 11 6 2.
15 8
1. Which is the order of this matrix? 4 -1 3 3
|6 -2 1 9
А.4 x 2
C. 3 x 3
E. 3 x 4
В. З х 2
D. 4 x 3
2. A matrix of order (m x n) is multiplied by a matrix of order (p x r). The
matrices are multiplicable when:
A.n = p
B. m =r
C. m = p
D. n = r
E. both matrices are
of the same order.
3 -2]
3. If A =
-4
then -2A is:
-4
-6
6.
А.
-8 12
-6
С.
8
4
4
Е.
-12
-12
8
- 6
В.
-8 -12
-4
-12
8
D.
-6
4
_4. When a matrix of order (m x n) is multiplied by a matrix of order (p ×
r) the order of the matrix obtained is:
А. т xр
В.п хр
C. n xr
D. m xr
E. m x n
-10
5. If A =
3
and B =
[7 1
then A + B equals:
-12
| 3 10
- 3
А.
5
3 2
E.
4
-17
-2
-1
– 22
5 2
[17
В.
5 22
4
- 3
D.
4 -2
5
2.
2.
C.
2.
Transcribed Image Text:15 8 1. Which is the order of this matrix? 4 -1 3 3 |6 -2 1 9 А.4 x 2 C. 3 x 3 E. 3 x 4 В. З х 2 D. 4 x 3 2. A matrix of order (m x n) is multiplied by a matrix of order (p x r). The matrices are multiplicable when: A.n = p B. m =r C. m = p D. n = r E. both matrices are of the same order. 3 -2] 3. If A = -4 then -2A is: -4 -6 6. А. -8 12 -6 С. 8 4 4 Е. -12 -12 8 - 6 В. -8 -12 -4 -12 8 D. -6 4 _4. When a matrix of order (m x n) is multiplied by a matrix of order (p × r) the order of the matrix obtained is: А. т xр В.п хр C. n xr D. m xr E. m x n -10 5. If A = 3 and B = [7 1 then A + B equals: -12 | 3 10 - 3 А. 5 3 2 E. 4 -17 -2 -1 – 22 5 2 [17 В. 5 22 4 - 3 D. 4 -2 5 2. 2. C. 2.
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,