O Find the exact six trigonometric functions values of 0. 0 8 7
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![**Problem 1** (20 points) Find the **exact** six trigonometric functions values of \( \theta \).
### Diagram Explanation:
The image shows a right triangle with:
- An angle labeled \( \theta \)
- A hypotenuse measuring 8 units
- A base (adjacent to \( \theta \)) measuring 7 units
- The other side (opposite to \( \theta \)) can be calculated using the Pythagorean Theorem.
### Solution Steps:
1. **Finding the opposite side:**
- Use the Pythagorean Theorem: \( a^2 + b^2 = c^2 \)
- \( a^2 + 7^2 = 8^2 \)
- \( a^2 + 49 = 64 \)
- \( a^2 = 15 \)
- \( a = \sqrt{15} \)
2. **Trigonometric Functions:**
- **Sine (\(\sin\)):** \(\sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{\sqrt{15}}{8}\)
- **Cosine (\(\cos\)):** \(\cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{7}{8}\)
- **Tangent (\(\tan\)):** \(\tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} = \frac{\sqrt{15}}{7}\)
- **Cosecant (\(\csc\)):** \(\csc(\theta) = \frac{\text{hypotenuse}}{\text{opposite}} = \frac{8}{\sqrt{15}} = \frac{8\sqrt{15}}{15}\)
- **Secant (\(\sec\)):** \(\sec(\theta) = \frac{\text{hypotenuse}}{\text{adjacent}} = \frac{8}{7}\)
- **Cotangent (\(\cot\)):** \(\cot(\theta) = \frac{\text{adjacent}}{\text{opposite}} = \frac{7}{\sqrt{15}} = \frac{7\sqrt{15}}{15}\)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F6e98cae1-b1c4-4df2-a1fd-3e3e014ed7fa%2Fa109dde3-846e-454b-9baa-da050ea000df%2Fa1hnxwq_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Problem 1** (20 points) Find the **exact** six trigonometric functions values of \( \theta \).
### Diagram Explanation:
The image shows a right triangle with:
- An angle labeled \( \theta \)
- A hypotenuse measuring 8 units
- A base (adjacent to \( \theta \)) measuring 7 units
- The other side (opposite to \( \theta \)) can be calculated using the Pythagorean Theorem.
### Solution Steps:
1. **Finding the opposite side:**
- Use the Pythagorean Theorem: \( a^2 + b^2 = c^2 \)
- \( a^2 + 7^2 = 8^2 \)
- \( a^2 + 49 = 64 \)
- \( a^2 = 15 \)
- \( a = \sqrt{15} \)
2. **Trigonometric Functions:**
- **Sine (\(\sin\)):** \(\sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{\sqrt{15}}{8}\)
- **Cosine (\(\cos\)):** \(\cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{7}{8}\)
- **Tangent (\(\tan\)):** \(\tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} = \frac{\sqrt{15}}{7}\)
- **Cosecant (\(\csc\)):** \(\csc(\theta) = \frac{\text{hypotenuse}}{\text{opposite}} = \frac{8}{\sqrt{15}} = \frac{8\sqrt{15}}{15}\)
- **Secant (\(\sec\)):** \(\sec(\theta) = \frac{\text{hypotenuse}}{\text{adjacent}} = \frac{8}{7}\)
- **Cotangent (\(\cot\)):** \(\cot(\theta) = \frac{\text{adjacent}}{\text{opposite}} = \frac{7}{\sqrt{15}} = \frac{7\sqrt{15}}{15}\)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)