nsecutive P

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

Consecutive Prime Sum:-.

 

# Consecutive Prime Sum

Some prime numbers can be expressed as a sum of consecutive prime numbers.

### For example:
- \( 5 = 2 + 3 \)
- \( 17 = 2 + 3 + 5 + 7 \)
- \( 41 = 2 + 3 + 5 + 7 + 11 + 13 \)

Your task is to find out how many prime numbers which satisfy this property are present in the range \( 3 \) to \( N \) subject to a given constraint. Write code to find out the number of prime numbers that satisfy the above-mentioned property in a given range.

### Input Format:
First line contains a number \( N \)

### Output Format:
Print the total number of all such prime numbers which are less than or equal to \( N \).

### Constraints:
\[ 2 < N \leq 12,000,000,000 \]

```cpp
/*

#include<iostream>
#include<math.h>
using namespace std;

bool isPrime(int n)
{
    if(n==1)
        return false;
    else{
        for(int i=2;i<=(int)sqrt(n);i++)
        {
            if(n%i == 0)
                return false;
        }
        return true;
    }
}

bool binarySearch(int a[],int n,int k)
{
    int first = 0;
    int last = n-1;
    while(first <= last)
    {
        int mid = (first + last)/2;
        if(a[mid]>k)
            last = last -1;
        else if(a[mid]<k)
            first = first + 1;
        else if(a[mid]==k)
            return true;
    }
    return false;
}

int main(int argc, char const *argv[])
{
    int count = 0,n,sum=2,prime_count=0;
    cin>>n;
    int primelist[n];
    for(int i=2;i<=n;i++)
    {
        if(isPrime(i)){
            primelist[count]=i;
            count++;
        }
    }
    for(int i=1;i<count;i++){
        sum = sum + primelist[i];
        if(binarySearch(primelist,count,sum))
        {
            prime_count++;
        }
    }
    cout<<"Total number of all such prime numbers are:"<<prime_count;
    return 0;
}
```
### Explanation
Transcribed Image Text:# Consecutive Prime Sum Some prime numbers can be expressed as a sum of consecutive prime numbers. ### For example: - \( 5 = 2 + 3 \) - \( 17 = 2 + 3 + 5 + 7 \) - \( 41 = 2 + 3 + 5 + 7 + 11 + 13 \) Your task is to find out how many prime numbers which satisfy this property are present in the range \( 3 \) to \( N \) subject to a given constraint. Write code to find out the number of prime numbers that satisfy the above-mentioned property in a given range. ### Input Format: First line contains a number \( N \) ### Output Format: Print the total number of all such prime numbers which are less than or equal to \( N \). ### Constraints: \[ 2 < N \leq 12,000,000,000 \] ```cpp /* #include<iostream> #include<math.h> using namespace std; bool isPrime(int n) { if(n==1) return false; else{ for(int i=2;i<=(int)sqrt(n);i++) { if(n%i == 0) return false; } return true; } } bool binarySearch(int a[],int n,int k) { int first = 0; int last = n-1; while(first <= last) { int mid = (first + last)/2; if(a[mid]>k) last = last -1; else if(a[mid]<k) first = first + 1; else if(a[mid]==k) return true; } return false; } int main(int argc, char const *argv[]) { int count = 0,n,sum=2,prime_count=0; cin>>n; int primelist[n]; for(int i=2;i<=n;i++) { if(isPrime(i)){ primelist[count]=i; count++; } } for(int i=1;i<count;i++){ sum = sum + primelist[i]; if(binarySearch(primelist,count,sum)) { prime_count++; } } cout<<"Total number of all such prime numbers are:"<<prime_count; return 0; } ``` ### Explanation
Expert Solution
steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Knowledge Booster
Fundamentals of Boolean Algebra and Digital Logics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education